# P2MP PMD Issues

Frank Effenberger Quantum Bridge Communications

# **Issues and future topics**

- Type 1 ONT Tx Spectral Width
  The effect of FEC
- Burst Mode Dynamics
- Isolation of Receivers
- Power leveling ONT Tx

# **ONT Spectral Widths**

 Spectral widths are calculated - For given wavelength ranges - Including penalty for MPN (k=0.5) Including penalty for pulse spread Larger spectral widths could be obtained by considering - Larger optical path penalty - Lower BER and FEC

# Potential $\Delta\lambda$ 's (nm)

| Distance (km)                       | 10            | 10            | 10            | 20   | 20    | 20   |
|-------------------------------------|---------------|---------------|---------------|------|-------|------|
| Penalty                             | 1dB           | 2dB           | 3dB           | 1dB  | 2dB   | 3dB  |
| BER                                 | <b>10</b> -12 | <b>10</b> -12 | <b>10</b> -12 | 10-4 | 10-4  | 10-4 |
| Epsilon                             | 0.16          | 0.19          | 0.20          | 0.21 | 0.265 | 0.3  |
| Industrial<br>D <sub>max</sub> =5.3 | 2.4           | 2.9           | 3.0           | 1.6  | 2.0   | 2.3  |
| Commercial<br>D <sub>max</sub> =3.9 | 3.3           | 3.9           | 4.1           | 2.2  | 2.7   | 3.1  |

# The effect of FEC

- Now, the 20km ONT uses a DFB to get a 1 dB penalty
- At BER of 10<sup>-4</sup>, spectral width of 2.3 nm yields a 3 dB penalty
- If FEC has a gain > 2dB, then it recovers the lost penalty
  - The link still works
- Can we have one PMD?

# **Burst Mode Dynamics**

- Technical approach largely determines the performance regime
- ONT laser driver options
  - Reuse GbE drivers
  - Reuse B-PON drivers
- OLT analog chain options
  - Ordinary CM
  - DC coupled
  - AC coupled

# **FSAN Pop-Quiz Answers**

The following is the range of answers that were given to the question, "How long should the physical layer overhead be at 1.2G speed?" (expressed in Bytes)

| • | Agere      | 3-6 | • | NEC      | 6          |
|---|------------|-----|---|----------|------------|
| • | Alcatel    | 12  | • | Oki      | >3         |
| • | Broadlight | 3-6 | • | Quantum  | <b>3-6</b> |
| • | Flexlight  | 3-6 | • | Terawave | 8          |
| • | lamba      | >3  | • | Zonu     | <b>3-6</b> |
|   |            |     |   |          |            |

#### **Comment on "Adaptability"**

 Higher layers may advertise the ability to adapt to PMD ability

Adapting to OLT is not so bad

Local and single instance

- Adapting to ONT is not so good
   Remote and multiple instance
- We should at least specify ONT dynamics

- Keep it simple...

# **Isolation of Receivers**

- Basic: must specify isolation against NEXT from Tx
  - External NEXT from ODN reflection
  - Consider NEXT internal to PMD
- Advanced: could specify isolation against enhancement band wavelengths
  - Requires at least cursory description of what 'enhancement band' carries

# **Power Leveling**

Current OLT dynamic range is getting big (21~23dB)
APD Rx could have trouble
ONT power leveling

Possible to lower power ~6 dB using cheap electronic means
Simple 2 mode scheme feasible

### **Two-mode Scheme**

#### ONT has two modes

- OLT measures power
- OLT controls ONT mode
- Ample 3 dB hysteresis and margin



#### Summary

There is much work to do
Interplay of MPN and FEC must be clarified

- Dynamic performance
- Isolation requirements
- Power leveling