OAM Transport Options

Frames and Preamble

Comparison Criteria

- Market Acceptance
- Standardization Complexity
- Implementation Complexity
- Responsiveness
- Fault Localization

Backward Compatibility and Universality

Bandwidth and Overhead

Frames

- Configurable bandwidth usage, N frames/second, each frame k bytes
 - E.g. 5x128B fps = 5 Kbps
 - E.g. 10x256B fps = 20 Kbps
- In-band, takes away bandwidth from user data

- Variable bandwidth dependent on frame sizes
- E.g. .13% < Link speed < 2.4%
- E.g. 1300 Kbps < 24000 Kbps on GE
- Out-of-band, does not detract from user data, on p2p links
- Out-of-band exceptions:
 - Copper requires transmission of preamble for EoCu links
 - PON dummy frames take away BW from other stations

Security

- OAM data is processed in the RS layer and is not accessible to the MAC layer or above
- Snooping requires capturing preamble harder
- Frames
 - OAM frames are processed by the MAC control layer because of the destination MAC address and EtherType – they are not forwarded off the link
 - Snooping requires capturing frames easier

Market Acceptance

- Very simple to implement and easily applicable to all Ethernets
- Utility of OAM will drive its acceptance, not the bit transport
- ATM OAM is precedence
- Preamble
 - Can address more than EFM market,
 - Protection capabilities target it at core/metro market as well
 - SONET OAM is precedence

Standardization Complexity (1)

- Clause 30 (Management) Add new oRemoteEntity object class
- Clauses 22 & 35 (RS/MII, RS/GMII) Support optional OAM transport in preamble, dummy frame generation, etc.
- Clause 22 & 45 Add new PHY monitoring registers (S/N ration, RX power, etc.)
- Clause 36 (PCS 1000BaseX) Ensure preamble transparency
- Clause New: OAM preamble format, HDLC encoding, etc.

Standardization Complexity (2)

- Clause 30 (Management) Add new oRemoteEntity object class
- Clause 31 (MAC Control) Add OAM section, describe frame formats and protocol operation
- Clause 22 & 45 Add new PHY monitoring registers (S/N ration, RX power, etc.)
- Annex 30A & 30B Add OIDs for new managed objects
- Annex 43B Add OAM types to Slow Protocols list, possibly modify Slow Protocol definition (allowable frames per second)

Implementation Complexity

- Frames
 - Requires a buffer in device
 - Frame processing and preparation in SW/FW
- Preamble
 - HW in RS for dummy frame generation, preamble write/read
 - HW/FW for HDLC framing, HDLC checksum
 - HW processing for flags (protection)
 - SW/FW processing for messages

Responsiveness & Detection

Preamble

- Information transmitted at worst every 1500B (on GE link,
 - < 1 msec delay)
- Very fast for bit alarms
- Suggested as method of failure detection and signaling for protection switching

- OAM frames inserted regularly
- Responsiveness depends on final selected frequency
 - 5 frames/second implies up to 200 msec delay
 - 20 frames/second implies up to 50 msec delay
- Does not react as quickly as preamble implemented in hardware

Fault Localization for

Regenerators

- Must send between minimum and maximum OAM frames per second (at least ingress & egress)
- Intermediate device (repeater, regenerator) must
 - Buffer entire frame
 - If OAM frame, replace it with its own OAM frame on transmit
- Preamble
 - Every frame has preamble
 - Intermediate device (repeater, regenerator) must
 - Buffer very little (tens of bytes)
 - Replace k preamble bytes with its own preamble bytes

Universality and Backward Compatibility

- Requires hardware upgrades to operate over existing Ethernets
- Existing MAC chips with integrated RS cannot be utilized
- Frames
 - Can be implemented with software or firmware upgrade for operation on existing Ethernets
 - Can be used with all existing HW components

Decide for yourself

	Importance	Frames Grade	Preamble Grade
BW/Overhead			
Security			
Market Acceptance			
Standards Complexity			
Implementation Complexity			
Responsiveness and Protection			
Fault Localization			
Backward Compatibility and Universality			