

OAM Tutorial *Current as of IEEE P802.3ah/D1.3*™

Presenter:

- Kevin Daines EFM OAM Editor
- Contributor:
 - Jonathan Thatcher

Agenda

- Overview
- OAM Protocol Data Units (OAMPDUs)
- Events
- Variable Retrieval
- Remote Loopback
- Vendor Specific Extensions
- Internal Block Diagram
- Modes

Overview: Parent Organizations

IEEE 802 LMSC

- Local Area Network/Metropolitan Area Network Standards Committee
- IEEE 802.3 CSMA/CD
 - Carrier Sense Multiple Access with Collision Detect (CSMA/CD) Working Group

• Commonly referred to as the Ethernet Working Group

IEEE P802.3ah Ethernet in the First Mile Task Force (EFM)

Overview: OSI Layer Stack

P802.3ah Layers

1Gb Link Segment 100 Mb Link Segment 10 Mb Link Segment

OAM = Operations, Administration & Maintenance MDI = Medium Dependent Interface (G)MII = (Gigabit) Media Independent Interface PCS = Physical Coding Sublayer

- PMA = Physical Medium Attachment
- PMD = Physical Medium Dependent

Overview: Objectives

OAM provides mechanisms to:

- Monitor link operation and health
- Improve fault isolation
- Method: OAM data conveyed in basic (untagged) 802.3 Slow Protocol Frames
 - Sent between two ends of a single link
 - Applicable to all P2P and emulated P2P Ethernet links
 - Slow protocol allows S/W implementation

Fills major requirement to reduce EFM OpEx

Overview: Non-objectives

Does not provide capabilities for:

- Station management
- Bandwidth allocation
- Provisioning
 - No SET functions
- End-to-end OAM communication

Overview: Compatibility

- OAM is optional and may be implemented in software or hardware
 - Also, may be implemented on one or more ports within a system
- 802.3x MAC Flow Control (PAUSE) inhibits all traffic *including* OAMPDUs
- Support for Unidirectional Operation is mutually exclusive with 802.3z Auto Neg
 - 802.3z Auto Neg must be disabled for OAMPDUs to be sent over unidirectional links
 - All P2P and emulated P2P PHYs supported

OAMPDU: Unidirectional

- OAM adding optional PCS feature to allow links to operate unidirectionally
 - Legacy links become inoperable when one direction fails
 - Newer links can send OAMPDUs unidirectionally to signal fault information

OAM Tutorial - 10 Mar 2003

OAMPDU: Forwarding - NOT

- Only traverse a single link
 - Not forwarded by bridges
- Communication beyond a single link left to higher layers

OAMPDU: Size/Rate

Must be standard frame length

- (i.e. 64-1518 octets)
- Maximum size determined during Discovery process
- Must be untagged

Octets

6	01-80-c2-00-00-02 [Slow Protocol]
6	MAC Source Address
2	Type=88-09 [Slow Protocols]
1	Subtype = 0x03 [<i>OAM</i>]
2	Flags field
1	Code
42-1496	Data field
4	Frame Check Sequence
64-1518	

• Maximum of (10) OAMPDUs per second

- Max rate defined in Annex 43B
- May be sent multiple times to increase likelihood of reception by remote device (e.g. in the case of high bit errors)

OAM Critical Events

Link Fault

- Signal remote device that receive path is broken
- Dying Gasp
 - Signal remote device that unrecoverable local fault (e.g. power failure) has occurred
- Sent in Flags field of every OAMPDUMay be sent immediately

OAMPDU: Information

Code: 0x00

- Data field: Local and Remote OAM_Information TLVs
- Length: 64 octets

OAMPDU: Event Notification

Code: 0x01

- Data field: Event TLV(s) → Descriptions follow
- Length: Variable

OAM Non-critical Events

- Errored Symbol Period Event
- Errored Frame Seconds Event
- Errored Frame Period Event
- Errored Frame Seconds Summary Event

Descriptions follow

- Sent as Event TLVs within Event Notification OAMPDU
- May be sent multiple times to increase likelihood of reception by remote device (e.g. in the case of high bit errors)

Errored Symbol Period Event

- A window, measured in number of symbols, where number of errored symbols exceeded a threshold
- Type: 0x01
- Length: 0x0E (14 octets)
- Value:

Fields	Width	Description	
Window	32-bits Lower bound: Symbols in 1 second Upper bound: Symbols in 60 seconds		
Threshold	32-bits	Lower bound: 0 Upper bound: unspecified	
Errors	32-bits	# of symbols errors in <i>Window</i>	

Likely change in D1.4

Errored Frame Seconds Event

- A window, measured in 100ms intervals, where number of errored frames exceeded a threshold
- **Type: 0x02**
- Length: 0x0C (12 octets)
- Value:

Fields	Width	Description	
Window	16-bits	Lower bound: 1 second	
		Upper bound: 60 seconds	
Threshold	32-bits	Lower bound: 0	
		Upper bound: unspecified	
Errors	32-bits	# of frame errors in <i>Window</i>	

Errored Frame Period Event

- A window, measured in frames, where number of errored frames exceeded a threshold
- **Type: 0x03**
- Length: 0x0E (14 octets)
- Value:

Fields	Width	Description	
Window	32-bits	Lower bound: # of 64B frames in 1 second	
		Upper bound: # of 64B frames in 60 seconds	
Threshold	32-bits	Lower bound: 0	
		Upper bound: unspecified	
Errors	32-bits	# of frame errors in <i>Window</i>	

Errored Frame Seconds Summary

- A window, measured in 100ms intervals, where number of errored frame seconds exceeded a threshold
- Type: 0x04
- Length: 0x08 (8 octets)
- Value:

Fields	Width	Description	
Window	16-bits	Lower bound: 10 seconds	
		Upper bound: 600 seconds	
Threshold	16-bits	Lower bound: 0	
		Upper bound: unspecified	
Errors	16-bits	# of errored frame seconds in Window	

Event: Extensions

Vendor Specific Event TLVs

- Type: 0x80-0xFF
- Length: Vendor Specific
- Value: Vendor Specific

OAMPDU: Variable Req/Resp

Variable Request

- Code: 0x02
- Data: Variable Descriptors
- Length: Variable

Variable Response

- Code: 0x03
- Data: Variable Containers
- Length: Variable

OAM Tutorial - 10 Mar 2003

Variable Retrieval

- Transfer Ethernet counters and statistics via Variable Containers/Descriptors
- Variables are referenced using Annex 30A CMIP registration arcs
- Can be used to emulate L2 Ping
 - (i.e. Tx Variable Request, Rx Variable Response)

Examples:		CMIP Registration Arcs	
	Variable	Branch	Leaf
	aFramesTransmittedOK	0x07	0x02
	aFrameCheckSequenceErrors	0x07	0x06
	aOctetsReceivedOK	0x07	0x0E

OAMPDU: Loopback Control

Code: 0x04

- Data field: Loopback timer (Conveyed in 100ms increments)
- Length: 64 octets

Remote Loopback

- Local end sends
 Loopback Control
 OAMPDU requesting
 remote end to go into
 loopback for a prescribed
 period of time
- Local end sends arbitrary data frames
- Remote end returns data frames
- Frame BER equals bit BER to high probability when bit BER is better than 10⁻⁶

Can be implemented in H/W or S/W

Frame Errors vs. Bit Errors

Assume errors are Poisson distributed in time

- e.g., system dominated by white, Gaussian noise
- ignores burst noise
- FER = BER if probability of
 >1 bit errors over the length of the frame is small
 - depends on BER & frame length
 - depends on acceptable probability for FER ≠ BER
- Sample calculation:
 - 30kb frame
 - acceptable probability ≤ 1%
 - \Rightarrow BER \leq 6 x 10⁻⁶

Source: John Ewen, JDSU 2002

OAMPDU: Vendor Specific IANA

Code: 0xFE

- Distinguisher: IANA 32-bit Private Enterprise Number
- Data field: Vendor Specific

OAMPDU: Vendor Specific OUI

Code: 0xFF

- **Distinguisher:** IEEE 24-bit Organizationally Unique Identifier
- Data field: Vendor Specific

OAM Sublayer Block Diagram

OAM Client

- Configures OAM sublayer
- Processes received PDUs
- Transmits PDUs

Parser

- Inspects received frames
- In normal mode, sends non-PDUs to upper layer
- In loopback mode, sends non-PDUs to Multiplexer
- Sends PDUs to Control block

Multiplexer

 Multiplexes PDUs and non-PDUs

OAM Modes

Two modes are defined: Active and Passive

- A port in Active mode initiatives the OAM Discovery process and is allowed to send any OAMPDU
 - At least one port must be Active mode
- A port in Passive mode waits for the remote device to initiate the Discovery process, responds to requests for Variables

Thank You!

OAM Tutorial - 10 Mar 2003

