IEEE 802.3 EFM

Voice Services over PON

Ariel Maislos

ariel.maislos@passave.com

May 9th 2001

History

- Legacy Enterprise Ethernet suffered from low QoS due to:
 - CSMA/CD no minimal delay guarantees
 - Best Effort switching no queuing delay guarantees

Not relevant in EPON

Scope

- Delay requirements summary
- QoS parameters
- Bearer mechanism
- Signaling method

Sample Delay Requirements

- International end to end delay (ITU G.114) < 150ms</p>
- National lag (ITU G.114) < 50ms
- Access system delay (GR303)
 < 25ms</p>
- Caller ID type 2 spec. delay (GR30) < 12.5ms
- Network-wide to avoid echo-canceling < 30ms</p>
- Access to avoid echo-canceling (T1.508) < 5ms</p>
- Switching hierarchy might impose more queuing delays

QoS Consideration

- Bounds on end-to-end delay
 - Packetization delay f(packet size)
 - Queuing delay f(grant cycle, system load)
 - Jitter buffer f(grant cycle)
 - Transmission delay f(packet size, line rate)
 - Propagation delay f(span)

Packetization Delay

- Suffered once when packet is same length as Grant Cycle
- Smaller packets have no benefit, requiring higher overhead as well as serialization delay

Queuing Delay

- Function of load offered to system.
 - CBR traffic source model (not Poissonic)
 - Priority based scheduling
 - No Oversubscription
- Queuing delay equals space between grants
- Susceptible to clock disparities

Jitter Buffer

Several sources for unexpected delay:

- Control messages stealing bandwidth
- Drift of clock domains sampling frequency error

• 'Breathing' of phase inside grant space

Can be bounded to Grant Cycle

Jitter Management

- Variable length frames can eliminate most buffering
 - Bounded by variance of phase-jitter in grant cycle
 - Similar effect gained by using very small packets with overhead penalty
- Two stage granting can reduce phase-jitter to zero.

Bearer Mechanism

- Application over RTP / IP
- Fixed size packets containing stream of samples and RTP header
- Variable length packets require synchronization between grant mechanism and packet generator

Clock Recovery

- Ethernet clock is 100ppm accuracy
- E1s require 50ppm
- Recommendations:
 - 8KHz clock not recovered from 125Mhz carrier
 - RTP mechanism for clock recovery from PDU required

Bandwidth Requirements

- RTP framing mechanism has 256 bit header
- Ethernet header (tagged) is 240 bit
- →Overhead of 25% for 1ms E1 traffic
- →Overhead of 155% for 5ms Voice traffic (although only 9.5Mbit for 96 phone lines)
- Susceptible to packet size
- Extremely susceptible to guard time and grand cycle through overhead at switching ONUs
- →16% bandwidth waste for 32 ONUs @ 5usec guard and 1msec cycle

Signaling

Not really in scope of IEEE 802.3 EFM

Conclusion

- Voice services are more than possible!
- Empirical results show 250+ E1s easily accommodated in 1G PON
 - Delay approximates 3*Grant Space

Recommendations

- Fixed size packets for simplicity
- Granting schedule of 1ms for reasonable E1 delays
- Small guard band required for high utilization
- Priority based queuing required

