ONU Auto Discovery

Bob Gaglianello Onn Haran Dolors Sala Lior Khermosh Carlos Ribeiro

Summary and Status

- This Presentation is a "Freshened" version from the last EFM meeting (Gaglianello_1_0302.pdf)
- Additions are in **RED**.
 - Terminology has been updated to align with recent presentations.
 - Contention Graph has been replaced with correct one.
- Major pending issues that still need resolving are:
 - Number of Logical MAC's per ONU
 - Discovery Contention Resolution Scheme
 - Dynamic Registration of Logical MAC's
 - Format of PON-Tags ==> LLID
 - Should LMAC traffic Be Coalesced into single Gate period

Discovery Process Conceptual View

802.3ah P2MP Track

Problem Description

- Harmonizing a new ONU into a PON
 - Knowing it's there
 - Knowing who it is
 - Negotiating System parameters such as:
 - Determining RTT
 - Laser turn-on/off times
 - Number of Logical MAC's per ONU
 - Can OLT limit LMAC's to one or some small number?
 - Assigning PON Tags (LLID's) for LMACs
 - (If more than one allowed)
 - Assigning/receiving Group-id's for ONU's

Discovery and Logical MACs

- ONU's can have multiple logical instances, called Logical MACs (as shown in conceptual diagram).
 - The use of these multiple instances is possibly out of scope?
- Various Logical MAC Types (P2PE, SE, SCB) are being defined
 - P2PE and / or SE MACs are required for 802.1d compliance
 - SCB is Native mode of EPON
- During Discovery, At Least One LMAC is registered
 - Multiple LMACs can be assigned during registration
 - Support for dynamic registration of Logical MACs after discovery is under consideration.
 - A minimum BW must be allocated for each LMAC
 - This BW is necessary for Gate/Report traffic

ONU Behavior During Discovery

- At Power-up / Reset, an ONU enters Discovery State:
 - Undiscovered ONU's Await Reception of "Discovery Gate" message from OLT
- A discovery/default LLID (??) is used following ONU power-up/reset
 - Single Copy Broadcast (SCB) can use the same default LLID value
- Unregistered ONU responds only:
 - If received message's LLID matches discovery/default
 LLID and the grant type is discovery

OLT Behavior During Discovery

• OLT Must Periodically Reserve Time Periods for Discovery

- This Discovery Window must be large enough to handle maximum reach of 20 Km (200 usecs RTD)
 - The Frequency of discovery windows can be chosen for desired overhead

• Since Undiscovered ONU Addresses are Unknown

- "Discovery Gates" are broadcast to all ONU's
- A globally assigned, link constrained, multicast MAC address should be defined (Request one from 802.xx)
- It is also possible to send "Discovery Gates" using unicast MAC addresses if MAC addresses are known, perhaps through a Provisioning interface

Discovery Protocol

- Four MAC control messages implement the protocol
 - "Discovery GATE": Creates transmission opportunity for undiscovered devices
 - Register_Request: ONU response to "Discovery Gate"
 - Register: OLT response to Register_Request
 - Register_Ack: ONU response to Register
- ONU's can wake-up Simultaneously
 - Protocol must deal with contention in Register_Requests
- Multiple ONU's can potentially be registered within single Discovery time period

Discovery Sequence Summary

Sequence – Failure Modes

- OLT assumes an ONU is unregistered if:
 - REGISTER_ACK message is not received at the first grant opportunity
 - ONU responds to "Discovery GATE" messages
- ONU assumes it is unregistered if:
 - After sending a REGISTER_REQUEST message, it receives a "Discovery GATE" before receiving a REGISTER message
 - After sending a REGISTER_ACK message, it receives a "Discovery GATE" before receiving a "Normal GATE" message

Resolving Discovery Contention

- Some sort of randomization must be applied to ONU Register messages to minimize collisions
- Two options are being investigated:
 - ONU skips (ignores) random number of discovery windows if previous ONU response wasn't acknowledged
 - Graph represents exponentially growing backoff scenario
 - ONU responds to every discovery opportunity using a random delay within the discovery window
 - Graph represents the scenario in which the window size allows up to 8 ONUs to be registered within a single discovery window
 - Discovery window size is fixed for entire graph

Contention Resolution Comparison

802.3ah P2MP Track

Comparison of two schemes

- Compare case where 8 ONU's are registering simultaneously
 - For Random Discovery Gate Time Case:
 - It takes 3 discovery windows to register all 8 ONU's
 - For 0.1 sec discovery window rate ==> 0.3 seconds
 - For 1 sec discovery window rate ==> 3 seconds
 - For Random Discovery Gate Skip Case:
 - It takes 26 discovery windows to register all 8 ONU's
 - For 0.1 sec discovery window rate ==> 2.6 seconds
 - For 1 sec discovery window rate ==> 26 seconds

Protocol Implications on Link Efficiency

• Link efficiency is impacted by:

- Frequency of discovery windows
 - Link efficiency goes down with more frequent discovery windows
 - Frequency also impacts length of time-out for error recovery

- Length of discovery windows

- Larger windows allow more ONUs to be registered per window
- Link efficiency goes down with larger discovery windows

Values for these parameters are left up to system implementers/designers

Protocol Implications on Link Efficiency: An Example

- For Max Reach, 200 usecs RTD, window must be 200 usecs plus enough time for:
 - single register_request message (random "discovery gate" skip case)
 - several register_request messages (random start time case)
- For 64 byte messages: approximately 2 usecs link occupancy
 - 1 usec for message, 1 usec for (guard band + Laser turn-on/off).
- For
 - random "discovery gate" skip case: use 2 usecs
 - random start time case: use (16 * 2 usecs) = 32 usecs
- This totals:
 - For random "discovery gate" skip case: 202 usecs
 - For random start time case: 232 usecs

Example Continued

The Overhead for Discovery for various Window Rates:

Rate	Random "Discovery Gate" skip	Random start time
0.1 second:	0.202%	0.232%
1 second:	0.0202 %	0.0232 %
5 seconds:	0.00404%	0.00464%
10 seconds:	0.00202%	0.00232%

- For rates 1 second and above, these overheads appear negligible
- Both schemes overhead is dominated by RTD for Maximum reach

Logical MAC Implications on Link Efficiency

- Link efficiency is impacted by Number of LMACs in a PON due to the need for Guard-Bands separating traffic from different ONUs / LMACs.
 - Assume:
 - 1 msec "Gate-Report Cycles"
 - 1 usec Guard-Band
 - 64 ONU's
 - 1, 8, or 16 LMACs per ONU.
 - LMACs are treated as independent ONU's
- Total time taken up by Guard-Bands is:
 - 1000 * 1e-6 * 64 * 1 = 64 msecs ==> 6.4 % overhead
 - 1000 * 1e-6 * 64 * 8 = 512 msecs ==> 51.2 % overhead
 - 1000 * 1e-6 * 64 * 16 = 1024 msecs ==> 102.4 % overhead
- Some form of coalescing LMAC traffic into single transmission Gate period should be explored.

Unresolved Issues for ONU Auto Discovery

- Assignment of LLID's or use existing ONU MAC addresses
 - Will not use the MAC address value in the LLID
- Support for Dynamic registration of individual Logical MACs
- Alternative ways to Assign BW to Logical MACs
 - Treat LMACs as complete independent ONU's which allows OLT to designate bandwidth
 - Let ONU request Total BW needed by all LMACs
- Discovery Contention Resolution Scheme.
 - We Still Need to choose one
- Number of Logical MACs allowed of each type (P2PE, SCB, SE)
 - Does one only need to worry about total LMACs per ONU, not types?
- Static provisioning of MAC addresses versus Discovery protocol
 - Static provisioning Is always an option but does not obviate the need for a Plug-and-Play discovery protocol definition.
- Explore ways to Coalesce all LMAC traffic from a given ONU into single gate period to save guard-band overhead.