CDR Lock Time Study

Eric Lynskey UNH-IOL
Bob Noseworthy UNH-IOL

FEC Group Participants (informal list)
Lior Khermosh, Passave
Ariel Maislos, Passave
Frank Effenberger, Quantum Bridge
Meir Bartur, Zonu
Ajay Gumalla, Broadcom
Ali Abaye, Centillium
Masoud Khansari, Centillium
Jonathan Thatcher, World Wide Packets
Pat Thaler, Agilent
Larry Rennie, National Semiconductor
Eric Lynskey, UNH IOL
John Limb, Broadcom
Piers Dawe, Agilent
Jerry Radcliffe, Hatteras Networks

THE INTEROPERABILITY LAB www.iol.unh.edu
UNIVERSITY of NEW HAMPSHIRE
Test procedure

• Connect channel between both GBICs such that a BER of 10^{-4} exists from Tx of GBIC 2 to Rx of GBIC 1 while GBIC 2 is transmitting repeating pattern:
 • /-K28.5/+D30.7/ (low frequency content, all bits
 • /+K28.5/-D30.7/ transition on output at each clock)

• Place SERDES 1 in loopback with comma detect off while transmitting repeating pattern:
 • /-D21.5/ (high frequency square wave, constant SERDES output on each clock)

• Remove SERDES 1 from loopback and measure time until data from GBIC 2 is present on output of SERDES 1.
Test Procedure

• Repeat multiple runs on each channel to capture statistical nature of errors, phase, and lock time

• Repeat for channels with different BER (10e-4, 10e-6, 10e-8…)
Data Capture Example

<table>
<thead>
<tr>
<th>Line #</th>
<th>Be4</th>
<th>Rx 10bCode</th>
<th>After</th>
<th>CG Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>0111110111</td>
<td>+</td>
<td>K17.7; Invalid(0111110111)</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>1000111101</td>
<td>+</td>
<td>-D17.4; RD Error (1000111101)</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>1100001110</td>
<td>+</td>
<td>K28.0; Invalid(1100001110)</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>1111100011</td>
<td>+</td>
<td>D31.3; Invalid(1111100011)</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>0011111010</td>
<td>+</td>
<td>-K28.5; RD Error (0011111010)</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>1000111110</td>
<td>+</td>
<td>D17.7; Invalid(1000111110)</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>1100000101</td>
<td></td>
<td>+K28.5</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>0111100001</td>
<td></td>
<td>-D30.7</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>0011111010</td>
<td>+</td>
<td>-K28.5</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>1000011110</td>
<td>+</td>
<td>+D30.7</td>
</tr>
<tr>
<td>11</td>
<td>+</td>
<td>1100000101</td>
<td></td>
<td>+K28.5</td>
</tr>
</tbody>
</table>
GBIC#1 10e-12 BER Histogram

CDR lock time with 10e-12 BER (400 samples)

Number of samples vs. CDR lock time (10s of bit times)
GBIC#1 10e-12 BER statistics

- 400 samples
- Min of less than 10 bit times
- Max of 210 bit times (170ns)
- Mean of 6 bit times (5ns)
- Standard deviation of 25 bit times (20ns)
GBIC#1 10e-8 BER Histogram
GBIC#1 10e-8 BER statistics

- 400 samples
- Min of less than 10 bit times
- Max of 670 bit times (540ns)
- Mean of 50 bit times (40ns)
- Standard deviation of 100 bit times (80ns)
GBIC#1 10e-4 BER Histogram
GBIC#1 10e-4 BER statistics

• 400 samples
• Min of less than 10 bit times
• Max of 810 bit times (650ns)
• Mean of 60 bit times (50ns)
• Standard deviation of 100 bit times (80ns)
GBIC#2 10e-12 Histogram
GBIC#2 10e-12 BER statistics

- 400 samples
- Min of less than 10 bit times
- Max of 200 bit times (160ns)
- Mean of 4 bit times
- Standard deviation of 20 bit times (16ns)
GBIC#2 10e-4 Histogram
GBIC#2 10e-4 BER statistics

- 400 samples
- Min of less than 10 bit times
- Max of 690 bit times (550ns)
- Mean of 75 bit times (60ns)
- Standard deviation of 110 bit times (90ns)
Conclusions

- CDR lock time is impacted by BER
- CDR lock time is impacted by O/E conversion