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Summary of Current Draft

Section 61.1.2.2.2 PHY LOOP AGGREGATION Transmit function:
• Determine the number of loops (N)
• Partition Frame into N parts depending on link speeds
• Determine sequence number and fragment number for each part
• Set sequence number & fragment number in EFM Header
• Hold off on transmission til no back-pressure
• Transmit to PTM-TC layer
• PTM-TC layer responsible for CRC on sub-packet
Section 61.1.2.2.3 PHY LOOP AGGREGATION Receive function:
• Check validate CRC of sub-packet at PTM-TC
• If any fragment errored, discard packet and start over
• Take one fragment from each loop
• Grab sub-packet with that sequence number from all loops with it, waiting if nec.
• Figure out if entire frame received by keeping track of number of fragments
• When all fragments available reassemble in order of fragment number
• Pass frame to MAC after reassembly

Packet Sequence Number (10b) Fragment Number (5b)Total Fragments (5b)
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Current Draft Analysis (1)

Good points:
• Receive doesn’t have to know about transmit, not even the number of 

lines used
• Allows vendor specific algorithms for product differentiation
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Current Draft Analysis (2)

Bad points:
• Hard limit on the number of loops supported (protocol header)
• Requires division (divides packet size to segment)
• Hold and wait strategy (must hold transmission til no 

backpressure on any loop)
• Complexity of two sequence number management (per packet, 

per fragment)
• More potential error conditions
• Must determine when all fragments received

• Redundant CRC protection for payload (per sub-packet and per 
packet)
• Lots of extra overhead!

• Requires CRC to be in PTM-SC to cover HDLC encapsulation
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Problems with Current Draft

1. Complicated fragmentation and inefficient use 
of sequence numbers

2. Wasted CRC in fragmentation
3. High overhead 
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Complicated Fragmentation and 
Inefficient Sequence Numbering

Two isn’t better than one
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Complicated Sequence Numbering

Complex and inflexible fragmentation 
• Actually using two sequence numbers, one for “which packet” 

and the other for “which fragment within packet”
• Twice as many error conditions 
• Really treating two sequence numbers as one sequence number 

with “gaps”
• Re-assembly requires two loops  (get minimum sequence number, 

get minimum fragment with that sequence number)
• Hard limit on fragmentation capacity (5-bit fragment number)
• Requires backpressure checks (I.e. wait til all links ready)

• More latency – wait for all lines to be ready
• Less bandwidth - no data flowing while waiting
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Complicated Sequence Numbering

Proposal:  Use a single sequence number with an “end-of-packet” and 
“start-of-packet” marker

Replace:

with

Wow, looks easy, eh?   See how much better life got!

But how do we use it?

Sequence Number EoP (1b)

Packet Sequence Number Fragment NumberTotal Fragments

SoP (1b)
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Complicated Sequence Numbering

Proposed Loop Aggregation Transmit:
• Choose a loop (algorithm need not be specified)
• Choose number of bytes to xmit on that loop (algorithm need not be specified)
• Increment and set fragment sequence number in EFM Header
• Set EoP/SoP in EFM Header as appropriate
• Transmit to PTM-TC layer on selected loop

Section 61.1.2.2.2 PHY LOOP AGGREGATION Transmit function:
• Determine the number of loops (N)
• Partition frame into N parts depending on link speeds
• Determine sequence number and fragment number for each part
• Set sequence number & fragment number in EFM Header
• Hold off on transmission til no back-pressure
• Transmit to PTM-TC layer
• PTM-TC layer responsible for CRC on sub-packet

Easily vary # of loops in use (not always N), & disparate rates – best utilization
No waiting for backpressure (don’t choose loop that’s backed up!)
Simpler, less work – one sequence number, not two – no need to know #fragments
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Complicated Sequence Numbering
Proposed Loop Aggregation Receive:
• Determine next sequence number expected on any loop, waiting if necessary
• Grab that fragment

• If EoP then pass buffer up to MAC
• If unexpected SoP, flush buffer til next SoP
• If buffer > maxFrameSize or errored fragment, then flush buffer til next SoP
• Else throw fragment into current packet buffer

Section 61.1.2.2.3 PHY LOOP AGGREGATION Receive function:
• Check validate CRC of sub-packet at PTM-TC
• If any fragment errored, discard packet and start over
• Take one fragment from each loop
• Grab sub-packet with that sequence number from all loops with it, waiting if nec.
• Figure out if entire frame received by keeping track of number of fragments
• When all fragments available reassemble in order of fragment number

• Either grab fragments in order, or use more complex re-assembly
• Pass frame to MAC after reassembly

Stop treating sequential assembly with two sequence numbers – simpler
Easy re-assembly – sequential buffer til EoP – no need to know #fragments
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Benefits of simplified sequencing (1)

• Flexibility
• Receive doesn’t have to know about transmit, not even the 

number of lines used
• Allows vendor specific transmit algorithms for product 

differentiation (more flexible loop use)
• Supports greater number of loops - limited only by sequence 

wrap
• Lower overhead – more loops does not mean tiny fragments!
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Benefits of simplified sequencing (2)

• Latency
• Lower latency - no hold and wait for backpressure across all 

loops
• Bandwidth

• No waiting implies more bits down pipes
• Simplicity

• Less complexity with single sequence number
• Less overhead

• Single sequence number more operationally efficient than 
two sequence numbers
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Wasted CRC Redundancy

Enough is enough
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Current CRC Use

Current Draft CRC handling
• Based on HDLC PTM mode of xDSL systems
• Each fragment gets own 16-bit FCS
• This is in addition to packet 32-bit FCS on Ethernet frame!
• An additional 2xN octets of overhead per frame (N is the number of loops)
• Ugh!  Can you say redundant?  Ugh!  Can you say redundant?

Only unprotected information is EFM header
• Add (smaller?) CRC to protect small EFM header
• No need to protect packet data again and again

EFM Header Fragment Fragment FCS

EFM Header FragmentEFMH CRC
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Benefits of CRC only on EFM Header

• Less overhead, less processing
• Doesn’t alter Ethernet FCS behavior

• Is a fragment CRC error an Ethernet packet CRC 
error?  I.e. how do we count it?

• Applies protection only where needed
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Higher Overhead

Right-sizing the header
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Current Overhead

Main components of EFM overhead are
• Two sequence numbers (15-bits)
• Fragment protection (16-bits)
• Number of fragments (5-bits)

Lots of per fragment overhead

Where do these numbers come from?  
• Support up to 32-pair
• 16-bit CRC
• 15-bit sequence number

What sizes are required?
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High Overhead – Number of pairs

Why 32-pair?  
• Seemed like a half-decent number in Raleigh
• It’s a power of 2!  Utilizes a binary number space
• Vast majority of support focused on 2-4 pair
• 16 is a big stretch for real deployments
• 32 is pulling a muscle, and not in a good way
• 32 pairs span across at least 2 bundles

• How likely is that?
Proposal:  

• Limit maximum number of supported pairs to 24 (one binder 
group)

• Note that proposed header does not limit via #fragments 
field, only limited by sequence number space
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High Overhead – Sequence Number

• Assume aggregating N loops
• Assume differential rate of loops <= R
• Assume fragments have max/min fragment size ratio M/m

• Likely related to differential rates
• What is worst case?  Send max fragment down slowest link, many min fragments 

down faster links

• To wrap sequence number, send S/(N-1) min size fragments down other links
• Each of these is received RM/m faster than max frag on slow link

0 1-S/(N-1) ...
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High Overhead – Sequence Number

• Assume aggregating N loops
• Assume differential rate of loops <= R
• Assume fragments have worst case fragment differential of M/m
• Sequence number S must be so S>=R(M/m)(N-1)
• E.g. Say one supports 24 aggregated loops(N), min fragment size 

of 64 (m) max of 512 (M), loops rates at most 8:1(R) , then
• S>=8*(512/64)*23~(2^11)

• Although the synchronization aspect has not been defined yet, it is likely 
that synchronization will require some kind of split horizon algorithm, 
resulting in another bit

• Conclusion:  Need >= 12 bits for sequence number
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High Overhead – CRC

CRC protects EFM header 
• What are the effects of an error missed by CRC?

• Possible incorrect re-assembly
• If frame FCS fails and packet discarded

• Possible re-ordering of packets 
• Fragment can be entire packet!

• Possible blocking of receive queue with corrupt 
sequence number
• Will likely cause flush and re-synchronization of sequence 

numbering
• Lots of trouble
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High Overhead – CRC

• How big should CRC be?  
• DSL gives 10-7 (2-21) bit error rate 

• Actually better, errors bursty
• Probability of error in EFM header < 2-25 

(assumes header/fragment <=1/16)
• N-bit CRC fails to detect error 2-N times
• 8-bit CRC leads to undetected fragment 

probability < 2-33
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Conclusions on EFM Header

1. Need >= 12 bits for sequence number
2. Need >= 8 bits for CRC
3. Need 2 bits for EoP and SoP
4. Couple of bits left over

12-bit Sequence Number EoP (1b) SoP (1b)Rsvd (2b) 8-bit CRC 
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Summary of Proposals

1. Simplify sequence number use and processing (single 
sequence number with start/end of packet markers)

2. Apply CRC only where needed (I.e. EFM header) not 
across data 

3. Limit to 24-pair (binder) for calculation purposes
4. Think about correct sizes for header fields

• Initial suggestions included
• 12-bit Sequence number
• 8-bit CRC


