Physical Layer Link Aggregation

IEEE EFM Interim • May 2002

Summary of Current Draft

Packet Sequence Number (10b)	Total Fragments (5b) Fragment Number (5b)												
Section 61, 1, 2, 2, 2, DHV LOOD ACCDEC	ATION Transmit function												
Determine the number of loops (N	I)												
 Partition Frame into N parts deper 	nding on link speeds												
Determine sequence number and fragment number for each part													
Set sequence number & fragment number in EFM Header													
Hold off on transmission til no bac	Hold off on transmission til no back-pressure												
PTM-TC layer responsible for CRC	on sub-nacket												
Section 61.1.2.2.3 PHY LOOP AGGREG	ATION Receive function:												
Check validate CRC of sub-packet	at PTM-TC												
• If any fragment errored, discard p	acket and start over												
 I ake one fragment from each loop Grab sub-packet with that sequence) co number from all loops with it waiting if nec												
 Grab Sub-packet with that sequent Figure out if entire frame received 	by keeping track of number of fragments												
When all fragments available reas	semble in order of fragment number												
Pass frame to MAC after reassemble	bly												
HAITERAS													

Current Draft Analysis (1)

Good points:

- Receive doesn't have to know about transmit, not even the number of lines used
- Allows vendor specific algorithms for product differentiation

Current Draft Analysis (2)

Bad points:

- Hard limit on the number of loops supported (protocol header)
- Requires division (divides packet size to segment)
- Hold and wait strategy (must hold transmission til no backpressure on *any* loop)
- Complexity of two sequence number management (per packet, per fragment)
 - More potential error conditions
 - Must determine when all fragments received
- Redundant CRC protection for payload (per sub-packet and per packet)
 - Lots of extra overhead!
- Requires CRC to be in PTM-SC to cover HDLC encapsulation

Problems with Current Draft

 Complicated fragmentation and inefficient use of sequence numbers
 Wasted CRC in fragmentation
 High overhead

Complicated Fragmentation and Inefficient Sequence Numbering

Two isn't better than one

IEEE EFM Interim • May 2002

Complex and inflexible fragmentation

- Actually using two sequence numbers, one for "which packet" and the other for "which fragment within packet"
 - Twice as many error conditions
 - Really treating two sequence numbers as one sequence number with "gaps"
 - Re-assembly requires two loops (get minimum sequence number, get minimum fragment with that sequence number)
 - Hard limit on fragmentation capacity (5-bit fragment number) Requires backpressure checks (I.e. wait til all links ready)
 - More latency wait for all lines to be ready
 - Less bandwidth no data flowing while waiting

Proposal: Use a single sequence number with an "end-of-packet" and "start-of-packet" marker

Replace:

		Ра	.cket	s Sec	quer	nce l	Numbe	er			Tota	l Fra	gmen	ts	Fra	gmen	it N	umber	2
with																			
							-					-		-					
							Sequ	uence	e Num	ber	EoP	(1b)	SoP	(1b)					

Wow, looks easy, eh? See how much better life got!

But how do we use it?

Proposed Loop Aggregation Transmit:

- Choose a loop (algorithm need not be specified)
- Choose number of bytes to xmit on that loop (algorithm need not be specified)
- Increment and set fragment sequence number in EFM Header
- Set EoP/SoP in EFM Header as appropriate
- Transmit to PTM-TC layer on selected loop

Section 61.1.2.2.2 PHY LOOP AGGREGATION Transmit function:

- Determine the number of loops (N)
- Partition frame into N parts depending on link speeds
- Determine **sequence number and fragment number** for each part
 - Set sequence number & fragment number in EFM Header
 - Hold off on transmission til no back-pressure
 - Transmit to PTM-TC layer
 - PTM-TC layer responsible for CRC on sub-packet

Easily vary # of loops in use (not always N), & disparate rates – best utilization No waiting for backpressure (don't choose loop that's backed up!) Simpler, less work – one sequence number, not two – no need to know #fragments

Proposed Loop Aggregation Receive:

- Determine next sequence number expected on any loop, waiting if necessary
- Grab that fragment
 - If EoP then pass buffer up to MAC
 - If unexpected SoP, flush buffer til next SoP
 - If buffer > maxFrameSize or errored fragment, then flush buffer til next SoP
 - Else throw fragment into current packet buffer

Section 61.1.2.2.3 PHY LOOP AGGREGATION Receive function:

- Check validate CRC of sub-packet at PTM-TC
- If any fragment errored, discard packet and start over
 - Take one fragment from each loop
- Grab sub-packet with that sequence number from **all loops** with it, waiting if nec.
 - **Figure out if entire frame received by keeping track of number of fragments** When all fragments available reassemble in order of fragment number

• **Either grab fragments in order, or use more complex re-assembly** Pass frame to MAC after reassembly

Stop treating sequential assembly with two sequence numbers – simpler Easy re-assembly – sequential buffer til EoP – no need to know #fragments

Benefits of simplified sequencing (1)

• Flexibility

- Receive doesn't have to know about transmit, not even the number of lines used
- Allows vendor specific transmit algorithms for product differentiation (more flexible loop use)
- Supports greater number of loops limited only by sequence wrap
- Lower overhead more loops does not mean tiny fragments!

Benefits of simplified sequencing (2)

• Latency

- Lower latency no hold and wait for backpressure across all
- loops
- Bandwidth
 - No waiting implies more bits down pipes
- Simplicity
 - Less complexity with single sequence number
- Less overhead
 - Single sequence number more operationally efficient than two sequence numbers

Wasted CRC Redundancy

Enough is enough

IEEE EFM Interim • May 2002

Current CRC Use

	EFM Header	Fragment	Fragment FCS
Cı •	Urrent Draft CRC ha Based on HDLC PTM Each fragment gets This is in addition to	andling mode of xDSL systems own 16-bit FCS packet 32-bit FCS on Etherne	t frame!
•	An additional 2xN oc Ugh! Can you say re	tets of overhead per frame (N edundant? Ugh! Can you say	is the number of loops) redundant?
0	nly unprotected inf Add (smaller?) CR	ormation is EFM header C to protect small EFM hea	lder

• No need to protect packet data again and again

				EFM	Heade	r EFM	H CRC					F	ragm	ent					
	тт	ED	٨	C													1 - - - - -		
NE	ΤV		R k	(S				IEEE	EFN	I Int	erim	• Se	eptei	mbei	- 20	02			

Benefits of CRC only on EFM Header

Less overhead, less processing
Doesn't alter Ethernet FCS behavior
Is a fragment CRC error an Ethernet packet CRC error? I.e. how do we count it?
Applies protection only where needed

Higher Overhead

Right-sizing the header

IEEE EFM Interim • May 2002

Current Overhead

Main components of EFM overhead are

- Two sequence numbers (15-bits)
 - Fragment protection (16-bits)
 - Number of fragments (5-bits)

Lots of per fragment overhead

Where do these numbers come from?

- Support up to 32-pair
- 16-bit CRC
- 15-bit sequence number

What sizes are required?

High Overhead – Number of pairs

Why 32-pair?

- Seemed like a half-decent number in Raleigh
- It's a power of 2! Utilizes a binary number space
- Vast majority of support focused on 2-4 pair
- 16 is a big stretch for real deployments
- 32 is pulling a muscle, and not in a good way
 - 32 pairs span across at least 2 bundles
 - How likely is that?

Proposal:

- Limit maximum number of supported pairs to 24 (one binder group)
- Note that proposed header does not limit via #fragments
 - field, only limited by sequence number space

High Overhead – Sequence Number

- Assume aggregating N loops
- Assume differential rate of loops <= R
- Assume fragments have max/min fragment size ratio M/m
 - Likely related to differential rates
- What is worst case? Send max fragment down slowest link, many min fragments down faster links

To wrap sequence number, send S/(N-1) min size fragments down other links Each of these is received RM/m faster than max frag on slow link

HATTERAS NETWORKS

High Overhead – Sequence Number

- Assume aggregating N loops
- Assume differential rate of loops <= R
- Assume fragments have worst case fragment differential of M/m
- Sequence number S must be so S>=R(M/m)(N-1)
- E.g. Say one supports 24 aggregated loops(N), min fragment size of 64 (m) max of 512 (M), loops rates at most 8:1(R), then
 - S>=8*(512/64)*23~(2^11)
- Although the synchronization aspect has not been defined yet, it is likely that synchronization will require some kind of split horizon algorithm, resulting in another bit
 - Conclusion: Need >= 12 bits for sequence number

High Overhead – CRC

CRC protects EFM header

- What are the effects of an error missed by CRC?
 - Possible incorrect re-assembly
 - If frame FCS fails and packet discarded
 - Possible re-ordering of packets
 - Fragment can be entire packet!
 - Possible blocking of receive queue with corrupt sequence number
 - Will likely cause flush and re-synchronization of sequence numbering
 - Lots of trouble

High Overhead – CRC

- How big should CRC be?
 DSL gives 10⁻⁷ (2⁻²¹) bit error rate
 - Actually better, errors bursty
 - Probability of error in EFM header $< 2^{-25}$
 - (assumes header/fragment <=1/16)
 - N-bit CRC fails to detect error 2^{-N} times
 - 8-bit CRC leads to undetected fragment probability < 2⁻³³

Conclusions on EFM Header

- 1. Need >= 12 bits for sequence number
- 2. Need >= 8 bits for CRC
- 3. Need 2 bits for EoP and SoP
- 4. Couple of bits left over

12-	-bit	Sequ	lence	e Nun	nber	EoP	(1b)	SoP	(1b)	Rsv	d (2b)	8-bit	CRC	

Summary of Proposals

- 1. Simplify sequence number use and processing (single sequence number with start/end of packet markers)
- 2. Apply CRC only where needed (I.e. EFM header) not across data
- 3. Limit to 24-pair (binder) for calculation purposes
- 4. Think about correct sizes for header fields
 - Initial suggestions included
 - 12-bit Sequence number
 - 8-bit CRC

