Improving Frame FEC Efficiency Using Frame Bursts

Ariel Maislos – Passave Lior Khermosh – Passave

Methodology

- FEC overhead was function of frame size
 - FEC overhead vulnerable to frame length distribution
 - Efficiency when transmitting small frames required improvement
- Solution: joint coding of a burst of frames
 - FEC layer exhibits efficiency as if transmitting long frames
 - Framing overhead reduced
 - Frame-FEC shows efficiency higher than Stream-FEC
- Frames forwarded to FEC sublayer from MAC are coded jointly
- Two methods proposed to signal FEC sublayer of frame burst
- Achieved efficiency is higher than Stream FEC proposal

What is a burst

- FEC markers signal start of burst and end of burst
- Parity corrects multiple frames inside burst
- 1:1 relation between parity size and marker distance

Carrier Extend Method

- MAC signals burst of frames using Carrier Extend
 interface
- FEC sees /R/ symbols between frames in same burst

Idle Method

- MAC signals burst of frames by not stretching IPG
- FEC sees /I/ symbols between frames in same burst without stretched IPG requires 12 byte memory

FEC TX Implementation

- Receives a burst of packets
- Encode packets, gathering 1518 to 3035 bytes
- Add start symbols at start of burst
- Add parity bytes after the last frame in the sequence
- Add stop symbols following parity

Burst Generation MAC Logic

FEC RX Implementation

- Detect start of burst
- Receive burst of frames gather 1518 to 3035 bytes
- Detect end of burst
- Decode FEC
- Correct errors and replace parity with /I/
- Receiver has constant delay of 3035 bytes

Frame FEC Efficiency When Bursting

- Frame FEC overhead: 7.3%
- Assuming
 - Carrier Extension for frame concatenation worse case scenario
 - Frame Size 1518
 - Ethernet Framing 20
 - FEC Data 123
- Stream FEC overhead: 8.2%
- Assuming:
 - Frame size 191
 - FEC Data 17

Conclusions

- FEC proposal using Ethernet framing proposed
- Reduction in framing overhead achieved without increase in complexity
- Backward compatibility with Ethernet maintained
- FEC overhead is 7.3% lower than any proposal with same performance
 - F-FEC code of (255,239) inherently more efficient than (208,191) used by S-FEC