EFM OAM Loopback

Ben Brown – AMCC Kevin Daines – World Wide Packets Don Pannell – Marvell Al Braga – UNH IOL

> IEEE802.3ah EFM Task Force September 2002

Changes to Discovery

- Add 2 new LOCAL_STATE & FAR_END_STATE bits
- New state encoding
 - UNSTABLE
 - **STABLE**
 - LOOBACK_STABLE
 - LOOPBACK_UNSTABLE
 - LOOPBACK_COMPLETE
- Use modified Discovery state machine to move from Loopback_xxx states to STABLE

Still needs to be drawn

IEEE802.3ah EFM Task Force September 2002

Startup

- Device A queues Loopback Control OAMPDU with non-zero Loopback Quantum value
- Device B responds with Status OAMPDU with new LOCAL_STATE value of LOOPBACK_STABLE
- Device A waits for Device B change of state, resending the Loopback Control OAMPDU if necessary
- When Device A state is STABLE and Device B state is LOOPBACK _STABLE, Device A's MAC Client initiates loopback data
- Device B uses this state combination to loop data frames
- Device A uses this state combination to drop data frames

Timeout Finish

- Device A keeps a copy of Device B's Loopback Quantum timer
- This counter is loaded and begins counting upon generation of Loopback Control OAMPDU
- Device A's counter will expire before Device B's counter
- Device A's MAC Client stops sending loopback data when its copy timer expires
- Device B reflects a state change upon its timer expiration
- Device B sends a Status OAMPDU with LOCAL_STATE = LOOPBACK_UNSTABLE
- Device B uses this state combination to drop data frames
- Device A uses this state combination to drop data frames

Loopback Timer Extension

- To extend Device B's loopback quantum timer, Device A queues additional Loopback Control OAMPDUs with non-zero Loopback Quantum value
- These can be lost with no knowledge of either side
- It is recommended that these are sent more often than absolutely necessary but there are still no guarantees
- If all extension frames are lost, Device B can still timeout
- Device B sends a Status OAMPDU with LOCAL_STATE = LOOPBACK_UNSTABLE
- Device A's MAC Client stops sending loopback data

Loopback Control Finish

- Device A's MAC Client stops sending loopback data when it desires to end the loopback test
- Device A queues Loopback Control OAMPDU with zero Loopback Quantum value
- Device B responds with Status OAMPDU with new LOCAL_STATE value of LOOPBACK_UNSTABLE
- Device A waits for Device B change of state, resending the Loopback Control OAMPDU if necessary

Loopback Conclusion

- When Device A state is STABLE and Device B state is LOOPBACK_UNSTABLE, Device A changes state to LOOPBACK_COMPLETE
- When Device A state is LOOPBACK_COMPLETE and Device B state is LOOPBACK_UNSTABLE, Device B changes state to STABLE
- When Device A state is LOOPBACK_COMPLETE and Device B state is STABLE, Device A changes state to STABLE
- Until both devices are STABLE, both Device A and Device B use these state combinations to drop data frames

OAM Discovery State Machine Page 1

OAM Discovery State Machine Page 2

