Proposed spectral limits for 1310 nm Gigabit PMDs in EFM

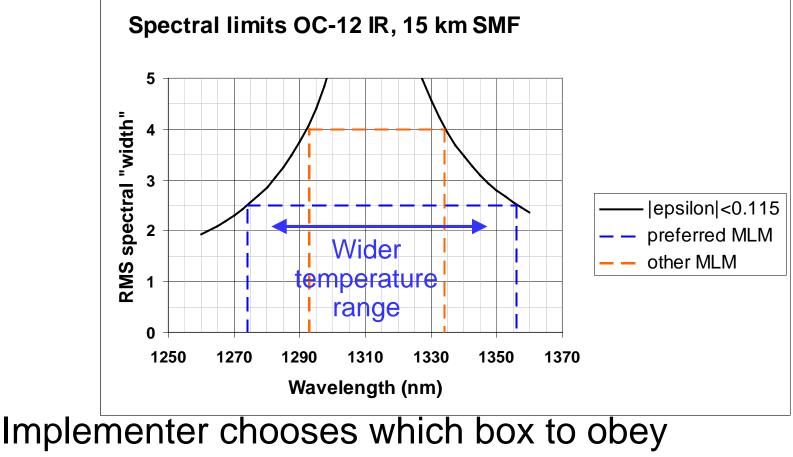
Piers Dawe Jim Tatum Meir Bartur Agilent Technologies Honeywell Zonu

Dispersion problem

- Extended temperature range means lasers are further from dispersion minimum
- Seek to use Fabry-Perot lasers
 - Finite spectral width, maybe implementer dependent
- Mode partition noise problem
 Important at 10 km borderline, needs care

More on mode partition noise

- Strength of the different FP modes varies rapidly ("mode partition")
 - while the sum of the modes largely follows the signal
- Light of different wavelengths arrives at the receiver at different times
- Received pulses have variable shape and timing: noisy
 - Noise cannot be bought out by increased power at the receiver
 - Doubt that can predict it accurately enough


Example of simple spec

- For FP lasers, ITU-T and SONET demand: |epsilon| <=0.115 (spec)
- where

epsilon = Dispersion.length.spectral width.Baud

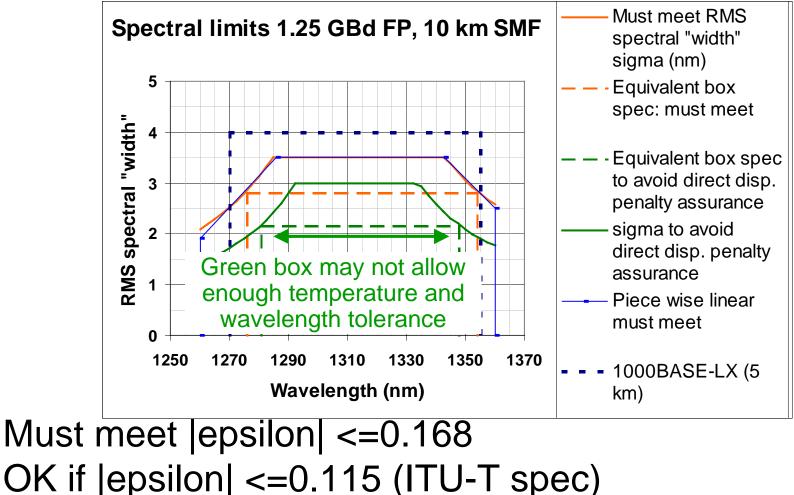
- epsilon is time-of-flight uncertainty normalised to bit period
- ITU-T specs fit boxes within epsilon limits
- This approach
 - Is simple, verifiable by customers
 - Leaves performance unused

Example of a 2-box spectral spec: OC-12 IR

Guarantees |epsilon| <=0.115 epsilon = Dispersion.length.spectral width.Baud

Example of complicated spec

- FibreChannel "Triple trade off"
- Allows trade of transmitted power vs. predicted MPN penalty
- Prediction uses wavelength, spectral width, assumed effective k factor
- Flexible
 - Does not tie us to a temperature range
 - Variable power limit attractive for VCSELs
 - but maybe not for network operators
- More complicated than we need
- Not accurate relies on assumptions


More on mode partition noise

- MPN factor k describes variability of the different FP modes
- Effective MPN factor k' describes MPnoise
- k' is not the same as k
 - It is much larger
 - It depends on many things in Tx and Rx
- Theories of MP and MPN are approximations
 - They work, but not as accurate as we need
 - Non-Gaussian statistics in real world

More on mode partition noise

- If we don't know k' we can't set an optimistic limit for epsilon
- If we set a pessimistic limit for epsilon
 - we can't achieve our reach, cost and temperature range objectives
- Therefore we must allow direct measurement approach
 - forget k and k', spec MPN penalty
- Easier to spec it as part of a bucket with other penalties
- Spec "transmitter & dispersion penalty", TDP

Proposed spectral spec for 10km 1.25 GBd

Use TDP if in between

epsilon = Dispersion.length.spectral width.Baud

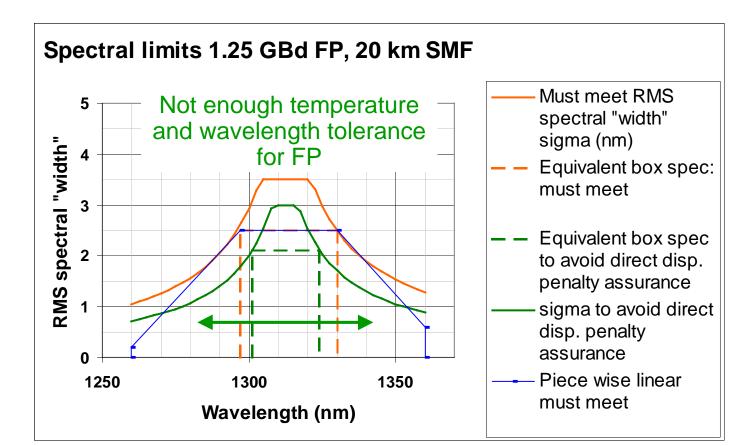
Proposed spec for 10km 1.25 GBd

- Blue "must meet" area
 - Approximates to orange curve
- Offer green "safe area"
- Assurance by TDP anywhere in blue area
- MPN penalty can be assumed <2dB in green area
- This approach maximises flexibility for moderate complexity
- Compatible with 1000BASE-LX
- We won't have to re-open the standard to extend the temperature range

Measuring MPN

- Spectrum may vary over time, temperature
- Reasonable to expect that MPN would too

 and MPN will depend on test receiver
- REALLY want to avoid "cliff edge" or BER floor
- Propose build in margin by "testing with" (assuring to) extra dispersion


– Maybe extra 25%?

- At temperature extremes, regular SMF may create the dispersion you need
 - but more than 10 km of it! See http://www.ieee802.org/3/efm/public/may02/bartur_5_0502.pdf

Implementers may not wish to measure TDP in production

- Each implementer may devise his own spectral width, center wavelength specs to meet the templates
- Alternative proposal: in addition, each implementer could choose his own allowance for MPN, and test the Tx against this reduced margin
- Each implementer may make a different choice for these parameters
- Allows trade-offs depending on the available technology and desired temperature range
- TDP methodology allows flexibility and low cost in practice

What about 20km 1.25 GBd?

DFB is good choice "Zero SMSR" DFB would work. Or FP and FEC?

New Orleans Sept 2002 Proposed spectral limits for 1310 nm Gigabit PMDs in EFM

Conclusions

- Box spec is too constraining
- Triple trade off may be too complicated
- Predictions from spectral width too inaccurate
- Combination of epsilon limit and TDP assurance is
 - most cost effective
 - compatible with 1000BASE-LX
 - avoids revisiting this issue in future