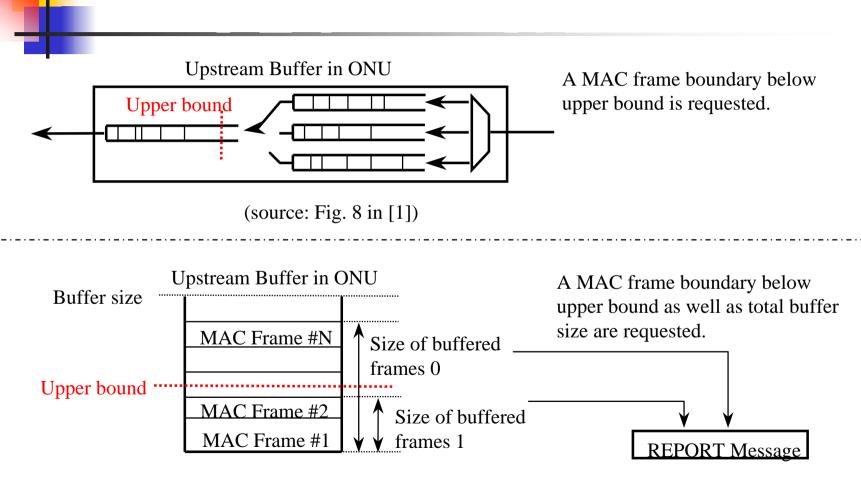
A proposal for a new MPCP mechanism to achieve higher utilization


Hidekazu Miyoshi Tohru Inoue Kazuhisa Yamashita

Sumitomo Electric Industries, Ltd.

Motivation

- Bandwidth assignment loss deteriorates upstream utilization.
- To solve the problem, introducing queue thresholds (upper bounds) in ONU has been proposed [1, 2].
- We found that carefully managing upper bounds can further enhance upstream efficiency.
- The managing issues of upper bounds, however, have not been sufficiently argued.
- The main purpose of this presentation is to
 - clarify upper-bound handling issues and
 - propose a new MPCP mechanism for achieving higher utilization.

Upper bounds

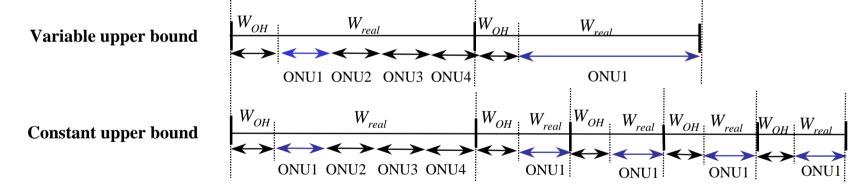
(source: [2])

Discussions

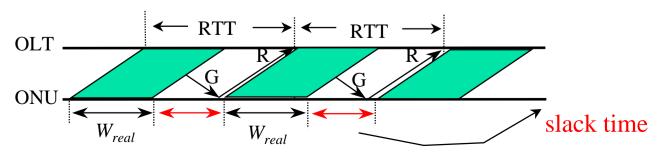
Q1) When upper bounds should be set?

- At initial setting by operator (constant upper bound)
- At negotiation of registration process (constant upper bound)
- While operation (variable upper bound)

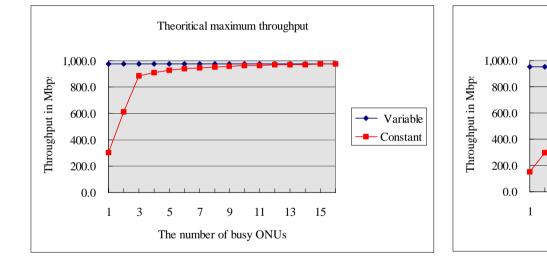
Q2) How frequently upper bounds should be changed?


• Ideally in the order of millisecond.

Q3) How to distribute upper bounds from OLT to ONUs?


• Currently, no specific method is defined.

Upper bounds: variable or constant


(a) A small number of busy ONUs causes cycle time shrunk, which can lead to an increase in overhead bandwidth.

(b) Cycle time cannot be smaller than RTT.

Upper bounds: variable or constant (contd.)

Guard time = 1.0 usec Maximum cycle time = 1.0 msec RTT = 200usec Line rate = 1,000Mbps Length of report message = 64Byte Max number of ONUs = 16 Guard time = 1.0 usec Maximum cycle time = 1.0 msec RTT = 200usec Line rate = 1,000Mbps Length of report message = 64Byte Max number of ONUs = 32

3

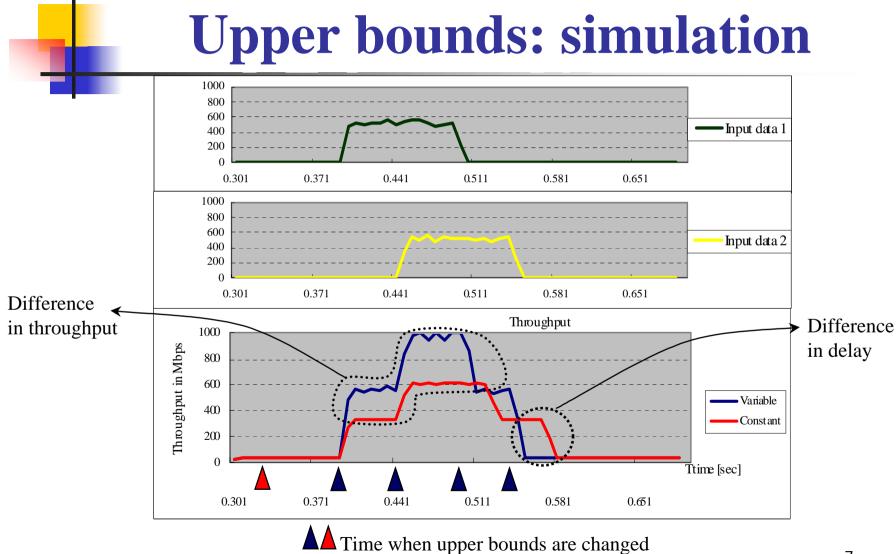
5

7

9

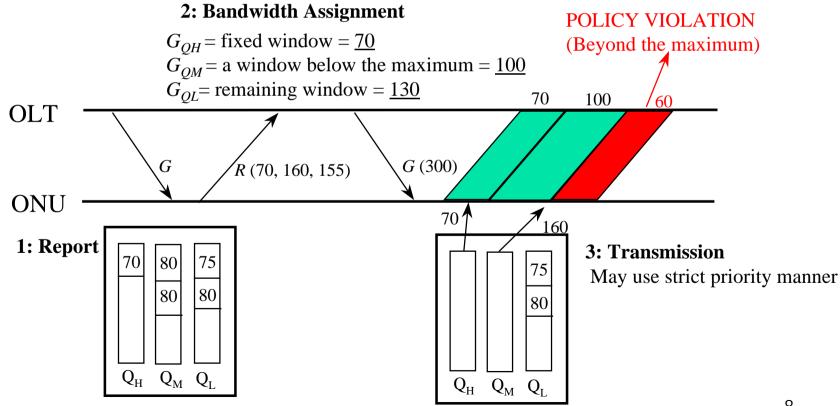
The number of busy ONUs

11

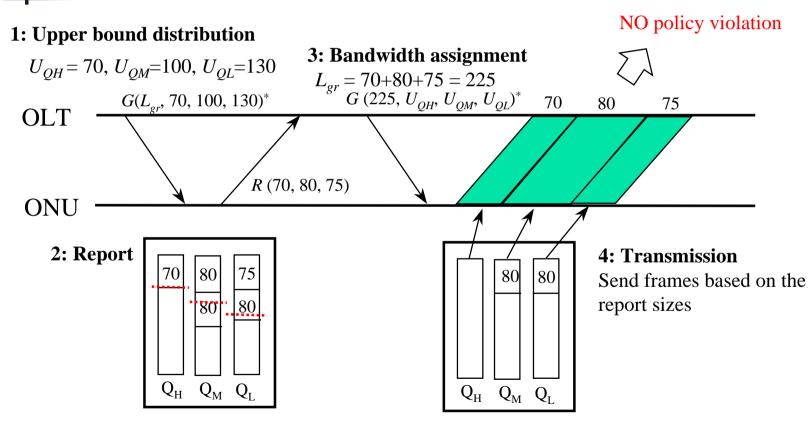

13

15

Theoritical maximum throughput


Variable

Constant



Multiple Queues: problem

Since the gate message specifies the total length granted, if OLT and ONU use different scheduling algorithms, a problem may occur.

Multiple Queues: remedy

* $G(L_{gr}, U_{QH}, U_{QM}, U_{QL})$, where L_{gr} is the grant length, and U_{QH}, U_{QM} , and U_{QL} are upper bounds

Proposed format of the Gate message

Proposal 1

	Field	Octets
	Destination Address	6
	Source Address	6
	Length/Type = 88-08	2
	Opcode = 00-02	2
	Timestamp	4
	Number of grants/Flags	1
	Grant #1 Length	2
	Grant #1 Start time	4
	Grant #2 Length	0/2
octets	Grant #2 Start time	0/4
	Grant #3 Length	0/2
	Grant #3 Start time	0/4
	Grant #4 Length	0/2
	Grant #4 Start time	0/4
	Bound bitmap	0/1
	Bound #0	0/2
*	Bound #1	0/2
	Bound #2	0/2
	Bound #3	0/2
	Bound #4	0/2
	Bound #5	0/2
	Bound #6	0/2
	Bound #7	0/2
	Pad/Reserved	0/33
	FCS	4

64

• Two option fields are proposed.

- **Bound bitmap** indicates which bounds are represented. If this field shows zero, no bound fields appear. This is the same concept of report bitmap in the report message.
- **Bound** #i represents the upper bound of queue #i. The resolution is 64bits.

• The IDLE sequence counter field is omitted, since this is *normal gate*.

Fields defined as Pads/Reserved in draft 1.0

Proposed format of the Gate message (contd.)

Proposal 2

	Field	Octets
	Destination Address	6
	Source Address	6
	Length/Type = 88-08	2
	Opcode = 00-02	2
	Timestamp	4
	Number of grants/Flags	1
	Grant #1 Length	2
	Grant #1 Start time	4
	Grant #2 Length	0/2
	Grant #2 Start delay time	0/3
	Grant #3 Length	0/2
	Grant #3 Start delay time	0/3
64 octets	Grant #4 Length	0/2
	Grant #4 Start delay time	0/3
	Bound bitmap	0/1
	Bound #0	0/2
	Bound #1	0/2
	Bound #2	0/2
V	Bound #3	0/2
	Bound #4	0/2
	Bound #5	0/2
	Bound #6	0/2
	Bound #7	0/2
	Pad/Reserved	1/33
	FCS	4

• Start time #2, #3, and #4 are now changed to start delay time, which indicates time difference in 16 bits time from the previous start time.

- Grants must be ordered in start time.
- The meanings of bound bitmap and bound are the same as the previous proposal.
- The IDLE sequence counter field is omitted, since this is normal gate.

Fields defined as Pads/Reserved in draft 1.0

Summary

- We analyzed the managing issue of upper bounds, which has not been sufficiently argued.
- Through our analysis and computer simulation, having upper bounds changed dynamically can cause higher efficiency.
- In addition, the variable upper bound mechanism shows the validity for overcoming the multiple queue problem.
- In order to distribute upper bounds, two extensions to the Gate message are proposed.

References

- [1] G. Kramer, B. Mukherjee, S. Dixit, Y. Ye, and R. Hirth, "Supporting differentiated classes of service in Ethernet passive optical networks," Journal of Optical Networking August&September 2002, pp. 280-298.
- [2] O. Yoshihara, Y. Fujimoto, N. Oota, and N. Miki, "High Performance EPON," IEEE 802.3ah meeting in November 2001.
 http://grouper.ieee.org/groups/802/3/efm/public/nov01/yoshihara_1_1101.pdf>