
64b/66b line code

Marek Hajduczenia, PhD
ZTE Corporation

marek.hajduczenia@zte.pt

mailto:marek.hajduczenia@zte.pt

Summary
• This slide deck provides overview of the

64b/66b line coding, its purpose, code
structure, available control codes, etc.

• We also briefly look at the reasons for using
64b/66b line coding in 10G-EPON.

• Suggestions for the line coding in EPoC are
also made, indicating that decision on the use
and the type of code influences many other
functions in EPoC.

• A decision on line code is needed to move the
draft development forward.

2

Why is line code important for EPoC?
• EPoC will need data structure with predictable

characteristics, allowing the receiving side to
synchronize to the incoming data stream
– A well designed line code can facilitate the process of

acquiring synchronization, speeding it up
– In simpler terms: thanks to a selected line code, we

can easily find start and end of frames.
• EPoC might also need to use Ordered Sets to

exchange information between local and remote
PCS, including local and remote fault indication.

• So what options for line code do we have for
EPoC?

3

Line Code choices (I)
• 8b/10b (25% overhead), as used in the

following PHYs:
– P2P fiber: 1000BASE-LX10 (59), 1000BASE-BX10

(59), 10GBASE-LX4 (53), 10GBASE-CX4 (54),
1000BASE-LX (38), 1000BASE-SX (38)

– P2MP fiber: 1G-EPON (60), 10/1G-EPON
(upstream) (75)

– Backplane: 1000BASE-KX (70), 10GBASE-KX4 (71)
– Cable assembly: 10GBASE-CX4 (84), 1000BASE-CX

(39)

4

Line Code choices (II)
• 64b/66b (3.125% overhead), as used in the

following PHYs:
– P2P fiber: 100GBASE-CR10 (86), 100GBASE-SR10 (86),

40GBASE-LR4 (87), 100GBASE-LR4 (88), 100GBASE-
ER4 (88), 40GBASE-FR (89), 10GBASE-SR (52),
10GBASE-SW (52), 10GBASE-LR (52), 10GBASE-LW
(52), 10GBASE-ER (52), 10GBASE-EW (52), 10GBASE-
LRM (68)

– P2MP fiber: 10/10G-EPON (75), 10/1G-EPON
(downstream) (75)

– Backplane: 10GBASE-KR (72), 40GBASE-KR4 (84)
– Cable assembly: 40GBASE-CR4 (85), 100GBASE-CR10

(85)

5

Line Code choices (III)
• 64b/65b (1.5625% overhead) :

– P2P copper: 10GBASE-T (55)

• 4D-PAM5
– P2P copper: 1000BASE-T (40)

• 8B6T
– P2P copper: 100BASE-T4 (23)

• 4b/5b (25% overhead)
– P2P copper: 100BASE-TX (25)
– P2P fiber: 100BASE-FX (26)

6

Line Code choices (IV)
• New line code designed explicitly for EPoC

– Longer development time for the spec and silicon.
Long-term testing of a new line code would be done
by fire on real EPoC devices in production networks.

– A new code might be more optimized for coax
transmission than current 64b/66b code and have
lower overhead

• Development of a new line code adds to project
timeline and uncertainty to performance of the
final product

• 64b/66b has been used commonly for the vast
majority of 1G+ Ethernet PHYs developed in
recent years.

 7

64b/66b line encoding process (I)

8

64b/66b line encoding process (II)
• We are only interested in functions in red box

marked on the previous slides (Tx direction)
• Two consecutive XGMII transfers (32 bits + 32 bits

of data) are aggregated into a 64-bit data vector.
• That data vector is then used to generate a 2-bit

synchronization header (Sync header for short),
prepending the actual 64-bit data vector
– Content of Sync header depends on data carried in 64-

bit vector received in two consecutive XGMII transfers
• In this way, a 66-bit encoded data vector is

created.
• The process in Rx direction is essentially an

inverse of the process shown in slide 3.
9

So what’s with this Sync header?
• Sync header is used to:

– guarantee minimum number of 0/1 transitions and
prevent long symbol runs (think of 64 1s or 0s) that
make clock recovery on receive side more challenging

– ensures clock recovery is possible at the receiver side
together with detection of invalid codes when
transmitting/receiving

– facilitate block alignment on the receiving side and
synchronization to the received bit stream

– identify data and control octets, allowing to carry
additional control information across the link (so-
called ordered sets, or Q symbols)

10

Vector types
• There are two vector types possible

– Sync header = 0b01: this 66-bit vector carries data
– Sync header = 0b10: this 66-bit vector carries a

mix of data and control characters, or control
characters only

• Sync headers with values of 0b00 and 0b11
are considered invalid and treated as error on
the receiving side. A 66-bit vector with invalid
Sync header is replaced with an Error (/E/)
character on XGMII.

11

More on valid vector types
• Data vector (Sync header = 0b01)

• Control vector (Sync header = 0b10)

– TYPE field indicates the type of the control vector,

and its internal structure
– Next slide shows available types of control vectors

 12

1 0

Sync
header

64 bits of data

data
octet 1

data
octet 2

data
octet 3

data
octet 4

data
octet 5

data
octet 6

data
octet 7

data
octet 8

0 1

Sync
header

56 bits of data

TYPE data
octet 1

data
octet 2

data
octet 3

data
octet 4

data
octet 5

data
octet 6

data
octet 7

Control Symbols (I)
• Start /S/ indicates the start of packet

– occurs only on positions 0 or 4 within aggregated 64-
bit vector received from XGMII

– receipt of /S/ on any other lane indicates error
• Terminate /T/ indicates the end of packet

– occurs on any position within aggregated 64-bit vector
received from XGMII

– followed by /S/ or /I/
• Error /E/ indicates error in data stream

– occurs on any position within aggregated 64-bit vector
received from XGMII

– used to relay Error indication across XGMII and then
onto the link peer station

13

Control Symbols (II)
• Ordered Set /Q/

– used to send control and status information (e.g., s
remote fault and local fault status) across the link to
the link peer station

– consist of a control character and three data
characters

– always begin on the first octet of the XGMII transfer
vector

– may be deleted / inserted by PCS to control adapt
between clock rates.
Such deletion only occurs when two consecutive
Ordered Sets are received and only one of the two is
deleted. Only IDLE Ordered Sets may be inserted for
clock compensation. Other types of Ordered Sets are
not deleted for the purpose of clock compensation .

14

64b/66b vector types

15

64b/66b control codes

16

64b/66b encoding examples (I)

17

• Transmission of a valid code set is shown
• Short data frame is transmitted, with correct

/S/ and /T/ symbols, followed by IDLEs

64b/66b encoding examples (II)

18

• Transmission of an invalid code set is shown
• /S/ symbol is transmitted correctly, and invalid

XGMII symbols are detected and converted
into /E/ characters

Summary & Suggestions (I)
• 10GBASE-R PCS structure, and specifically

64b/66b encoding / decoding processes are
described in Clause 49

• 10G-EPON reuses these mechanisms through
references. There are no additional Ordered
Sets added by 10G-EPON.

• Unless changes to 64b/66b operation are
required, we could reuse it through reference
to Clause 49
– Less work, less debugging, existing and tested

mechanisms are already in place

19

Summary & Suggestions (I)
• Line code structure would then define the

possible sizes of the PHY blocks
– Multiples of 66-bit vectors would allow to avoid

fragmentation of vectors across OFDM symbols
– The line code choice also impacts FEC. Multiples

of 66-bit or 65-bit vectors (to be selected*) need
to be supported to avoid vector level jitter and
fragmentation of vectors across FEC words.

Decision on line code impacts many choices we
need for EPoC to start moving towards the draft.

* In 10G-EPON, Sync headers are truncated for FEC-coding to fit the maximum
number of data vectors into a single FEC payload (see backup slide)

20

Straw Poll
• EPoC PHY shall use the 64b/66b line encoding

(as defined in IEEE Std 802.3-2012, Clause 49)
within PCS.

• Yes:
• No:
• No opinion:

21

FEC in 10G-EPON (encoding)

23

	64b/66b line code
	Summary
	Why is line code important for EPoC?
	Line Code choices (I)
	Line Code choices (II)
	Line Code choices (III)
	Line Code choices (IV)
	64b/66b line encoding process (I)
	64b/66b line encoding process (II)
	So what’s with this Sync header?
	Vector types
	More on valid vector types
	Control Symbols (I)
	Control Symbols (II)
	64b/66b vector types
	64b/66b control codes
	64b/66b encoding examples (I)
	64b/66b encoding examples (II)
	Summary & Suggestions (I)
	Summary & Suggestions (I)
	Straw Poll
	THANK YOU
	FEC in 10G-EPON (encoding)

