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101.3 Physical Coding Sublayer (PCS) for EPoC

This subclause will be modelled after 76.3 for 10G-EPON, with all the necessary changes for EPoC, e.g.,
changing FEC definition structure, presence of line coding and its type, scrambling / interleaving. The current
structure is just first order approximation and will be modified as more contributions for PCS structure and
functions arrive. 

101.3.1 Overview

This subclause defines the Physical Coding Sublayer (PCS) for {EPoC_PMD_NAME}, supporting TDD
and FDD mode operation over the point-to-multipoint coaxial medium architecture. The EPoC PCS is spec-
ified to support the operation of up to 10 Gb/s in the downstream direction and up to 10 Gb/s in the upstream
direction, where the upstream and downstream data rates are configured independently, in the function of
the assigned RF spectrum. 

This subclause also specifies a forward error correction (FEC) mechanism to increase the available link bud-
get and the Idle control character insertion and Idle control character deletion mechanisms - part of the data
rate adaptation function combining the MAC and MAC Control Clients operating at 10 Gb/s with EPoC
PCS and PMD layers operating at the data rates below 10 Gb/s. 

{Figure 101-X} shows the relationship between the EPoC PCS sublayer and the ISO/IEC OSI reference
model.

101.3.1.1 EPoc_PMD_Name PCS

The EPoC PCS extends the 10GBASE-PR PCS described in {Clause 76} to support TDD and FDD mode of
operation over the point-to-multipoint coaxial medium architecture. Figure 101–1 illustrates the functional
block diagram of the downstream path in the EPoC PCS operating in FDD mode, Figure 101–2 illustrates
the functional block diagram of the downstream path in the EPoC PCS operating in FDD mode, and
Figure 101–3 shows the functional block diagram of the upstream path in the EPoC PCS for both the TDD
and FDD modes.

101.3.2 Low-Density Parity-Check (LDPC) Forward Error Correction (FEC) codes

101.3.2.1 LDPC codes

The {EPoC_PMD_Name} encodes the transmitted data using a systematic LDPC (FC, FP) code. A LDPC
encoder encodes FP information bits  into a codeword

by adding FR parity bits  obtained so that

where H is an FR × FC binary matrix containing mostly ‘0’ and relatively few ‘1’, called low-density parity-
check matrix. (see [1] and [2]). The detailed description of such parity check matrices is given in 101.3.2.2.

{to be included in informative references: [1] R. G. Gallager, “Low density parity check codes,” IRE Trans.
Inform. Theory, vol. IT-8, pp. 21–28, Jan. 1962.; [2] T. Richardson and R. Urbanke, “Modern Coding The-
ory," Cambridge University Press, 2008}

The CLT {EPoC_PMD_Name} PCS operating on amplified CCDN shall encode the transmitted data using
the LDPC (FC, FP) code per Table 101–1. The CNU {EPoC_PMD_Name} PCS operating on amplified
CCDN shall encode the transmitted data using LDPC (FC, FP) codes per Table 101–2.

i0... iFP 1–

c i0 ... iFP 1– pFP
... pFC 1–   ( , )=

pFp
...pFC 1–

Hc
T

0=
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The CLT {EPoC_PMD_Name} PCS operating on amplified CCDN shall decode the received data using one
of the LDPC (FC, FP) codes per Table 101–2. The CNU {EPoC_PMD_Name} PCS operating on amplified
CCDN shall decode the received data using the LDPC (FC, FP) code per Table 101–1. 

Annex 101A gives an example of LDPC (FC, FP) FEC encoding. {we will need to select one of the codes
from the family of codes we use in either downstream or upstream and then generate examples}

Annex 101B gives an example of LDPC (FC, FP) FEC decoding. {we will need to select one of the codes
from the family of codes we use in either downstream or upstream and then generate examples}

101.3.2.2 LDPC matrix definition

The low-density parity check matrix H for LDPC (FC, FP) encoder can be divided into blocks of L2 sub-
matrices. Its compact circulant form is represented by an m × n block matrix:

where the submatrix Hi,j is an L × L all-zero submatrix or a cyclic right-shifted identity submatrix. The last
n–m sub-matrix columns represent the parity portion of the matrix. Moreover, nL = FC, mL = FP and the
code rate is (n–m)/n = (FC–FP)/FC. In this specification, the sub-matrix size L is called the lifting factor. 

Table 101–1—LDCP codes used by the CLT {EPoC_PMD_Name} PCS for amplified CCDN
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Table 101–2—LDCP codes used by the CLT {EPoC_PMD_Name} PCS for amplified CCDN
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In this specification, the sub-matrix Hi,j is represented by a value in {-1, 0,…, L-1}, where a ‘-1' value repre-
sents an all-zero submatrix, and the remaining values represent an L × L identity submatrix cyclically right-
shifted by the specified value. Such representation of the parity-check matrix is called a base matrix.

Table 101–3 presents a 5 × 45 base matrix of the low-density parity-check matrix H for LDPC (16200,
14400) code listed in Table 101–1 for downstream and Table 101–2 for upstream, respectively. The lifting
factor of the matrix is L=360. 

Table 101–3—LDPC (16200, 14400) code matrix

Columns
Rows

1 2 3 4 5

1 93 274 134 -1 253

2 271 115 355 -1 273

3 -1 329 175 184 90

4 83 338 24 70 -1

5 26 124 253 247 -1

6 208 -1 242 14 151

7 245 293 -1 22 311

8 200 -1 187 7 320

9 -1 69 94 285 339

10 175 64 26 54 -1

11 331 342 87 -1 295

12 17 -1 302 352 148

13 86 88 -1 26 48

14 -1 139 191 108 91

15 337 -1 323 10 62

16 -1 137 22 298 100

17 238 212 -1 123 232

18 81 -1 245 139 146

19 -1 157 294 117 200

20 307 195 240 -1 135

H

H1 1 H1 2 H1 3 ... H1 n

H2 1 H2 2 H2 3 ... H2 n

H3 1 H3 2 H3 3 ... H3 n

... ... ... ...

Hm 1 Hm 2 Hm 3 ... Hm n

=
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Table 101–4 presents a 5 × 33 base matrix of the low-density parity-check matrix H for LDPC (5940, 5040)
code listed in Table 101–2 for upstream. The lifting factor of the matrix is L=180. 

Table 101–5 presents a 5 × 20 base matrix of the low-density parity-check matrix H for LDPC (1120, 840)
code listed in Table 101–2 for upstream. The lifting factor of the matrix is L=56. 

21 -1 357 84 336 12

22 165 81 76 49 -1

23 -1 194 342 202 179

24 47 1 345 359 -1

25 76 159 174 342 -1

26 73 56 269 -1 232

27 150 72 329 224 -1

28 349 126 -1 106 21

29 139 277 214 -1 331

30 331 156 -1 273 313

31 118 32 -1 177 349

32 345 111 -1 245 34

33 27 175 -1 98 97

34 294 -1 218 355 187

35 -1 306 104 178 38

36 145 224 40 176 -1

37 279 -1 197 147 235

38 97 206 73 -1 52

39 106 -1 229 280 170

40 160 29 63 -1 58

41 143 106 -1 -1 -1

42 -1 334 270 -1 -1

43 -1 -1 72 221 -1

44 -1 -1 -1 208 257

45 -1 -1 -1 -1 0

Table 101–3—LDPC (16200, 14400) code matrix (continued)

Columns
Rows

1 2 3 4 5
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Table 101–4—LDCP (5940, 5040) code matrix

Columns
Rows

1 2 3 4 5

1 142 54 63 28 52

2 158 172 11 160 159

3 113 145 112 102 75

4 124 28 114 44 74

5 92 55 61 8 46

6 44 19 123 84 71

7 93 159 72 126 42

8 70 22 55 9 11

9 172 96 114 169 108

10 3 12 20 174 153

11 25 85 53 147 -1

12 44 -1 114 24 72

13 141 128 42 145 -1

14 160 5 33 -1 163

15 50 158 4 26 -1

16 45 120 66 -1 9

17 118 51 163 -1 2

18 84 171 50 -1 168

19 -1 65 46 67 158

20 64 141 17 82 -1

21 66 -1 175 4 1

22 97 42 -1 177 49

23 1 83 -1 151 89

24 115 7 -1 131 63

25 8 -1 92 139 179

26 108 39 -1 117 10

27 -1 121 41 36 75

28 -1 84 138 18 161
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29 11 101 -1 -1 -1

30 -1 171 34 -1 -1

31 -1 -1 74 23 -1

32 -1 -1 -1 8 177

33 -1 -1 -1 -1 19

Table 101–5—LDCP (1120, 840) code matrix

Columns
Rows

1 2 3 4 5

1 5 0 12 0 36

2 14 35 28 51 6

3 12 1 22 16 3

4 1 26 46 31 51

5 2 0 3 13 4

6 37 10 16 39 19

7 45 16 51 27 4

8 26 16 2 33 45

9 24 34 25 8 48

10 0 4 29 27 9

11 3 2 19 53 -1

12 -1 23 18 13 11

13 34 0 52 -1 22

14 7 51 -1 52 23

15 46 -1 37 33 43

16 10 49 -1 -1 -1

17 -1 20 34 -1 -1

18 -1 -1 39 38 -1

19 -1 -1 -1 7 14

20 -1 -1 -1 -1 1

Table 101–4—LDCP (5940, 5040) code matrix (continued)

Columns
Rows

1 2 3 4 5
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101.3.3 PCS transmit function

In the CLT, the PCS transmit function operates in a continuous (FDD mode) or burst (TDD mode) fashion at
the data rate of up to 10 Gb/s, depending on the allocated RF spectrum and the configured operation mode.
In the CNU, the PCS transmit function operates in a burst fashion (TDD and FDD modes) at the data rate of
up to 10 Gb/s, depending on the allocated RF spectrum and the configured operation mode. Figure 101–1
illustrates the transmit direction of CLT PCS operating in FDD mode, Figure 101–2 illustrates the transmit
direction of CLT PCS operating in TDD mode, and Figure 101–3 illustrates the transmit direction of the
CNU PCS.

The EPoC PCS includes a mandatory FEC in the transmit direction, along with 64B/66B encoder as well as
an Idle control character deletion function performing data rate adaptation and FEC overhead compensation
functions.

In the transmit direction, the EPoC PCS includes an Idle control character deletion function performing the
function of data rate adaptation and a FEC overhead compensation, followed by a 64B/66B encoder, and a
mandatory FEC encoder. 

 

Figure 101–1—EPoC PCS functional block diagram, downstream path for FDD mode
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Figure 101–2—EPoC PCS functional block diagram, downstream path for TDD mode
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Figure 101–3—EPoC PCS functional block diagram, upstream path
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101.3.3.1 Idle control character deletion process

In the transmitting PCS, the Idle control character deletion process is responsible for deleting excess Idle
control characters inserted in between individual frames to adjust the data rate enforced by the MAC Control
(as defined in {Clause 102}) to the effective data rate supported by the PCS and PMD. The gaps created
within the data stream by the operation of the Idle control character deletion process are used in one of the
following ways:

a) some gaps created by the removal of Idle control characters are filled with FEC parity data (FEC
overhead compensation sub-process); and

b) other gaps created by the removal of Idle control characters are discarded in order to decrease the
data rate between the MAC and PHY, while maintaining the effective data rate unchanged (data rate
adaptation sub-process). 

The Idle control character deletion process deletes a specific number of 72-bit vectors containing Idle con-
trol characters from the data stream composed of a series of 72-bit vectors received from the XGMII. The
number of deleted 72-bit vectors containing Idle control characters depends on the EPoC PMD data rate,
PMD overhead (including, for example, Cyclic Prefix), and the size of FEC parity data. The Idle control
character deletion process is composed of two sub-processes executed in the following order:

a) data rate adaptation sub-process, where the PCS discards a specific number of excess Idle control
characters to decrease the data rate to match the effective data rate supported by the EPoC PMD; at
the output of the data rate adaptation sub-process, the data stream still contains excess Idle control
characters; and 

b) FEC overhead compensation sub-process, where the PCS discards the remaining excess Idle control
characters to prepare space in the de-rated data stream for PHY parity data; at the output of the FEC
overhead compensation sub-process, the data stream does not contain any excess Idle control char-
acters. 

The operation of the EPoC MPCP defined in {Clause 102} ensures that a sufficient number of excess Idle
control characters are present in the data stream, so that the minimum IPG between two adjacent frames is
preserved once all excess Idle control characters are removed through the operation of the data rate adapta-
tion and the FEC overhead compensation sub-processes.

101.3.3.1.1 Constants

FEC_DSize
TYPE: 16-bit unsigned integer
The number of 72-bit vectors constituting the payload portion of a FEC codeword. To normal-
ize pre-FEC data rate, the Idle control character deletion process removes FEC_OSize vectors
per every FEC_DSize vectors transferred to the 64B/66B encoder.
Value: {TBD}

FEC_OSize
TYPE: 16-bit unsigned integer
The number of 72-bit vectors constituting the parity (overhead) portion of a FEC codeword. To
normalize pre-FEC data rate, the Idle control character deletion process removes FEC_OSize
vectors per every FEC_DSize vectors transferred to the 64B/66B encoder.
Value: {TBD}

Note that the list of constants will be updated per technical decision #45 (http://www.ieee802.org/3/bn/pub-
lic/decisions/decisions.html) once EPoC-specific FEC and PMD overhead details are settled.
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101.3.3.1.2 Variables

BEGIN
TYPE: Boolean
This variable is used when initiating operation of the state diagram. It is set to true following
initialization and every reset.

delayBound
TYPE: 16-bit unsigned integer
This value represents the delay sufficient to initiate the transmitter at the CNU and to stabilize
the receiver at the CLT (i.e., the maximum FIFO size expressed in units of 66-bit blocks). The
value of delayBound includes {to be added when the burst structure is known}. This variable is
used only by the CNU.

PHY_DSize
TYPE: 16-bit unsigned integer
The number of 72-bit vectors constituting (together with PHY_OSize) the denominator in the
EPoC PCS de-rating Equation (101–1). To normalize the effective PCS data rate, the Idle con-
trol character deletion process removes PHY_OSize vectors per every PHY_DSize vectors
transferred to the FEC overhead compensation sub-process.
Value: {TBD, reference how it is calculated ?}

(101–1)

PHY_OSize
TYPE: 16-bit unsigned integer
The number of 72-bit vectors constituting the numerator in the EPoC PCS de-rating
Equation (101–1). To normalize the effective PCS data rate, the Idle control character deletion
process removes PHY_OSize vectors per every PHY_DSize vectors transferred to the FEC
overhead compensation sub-process.
Value: {TBD, reference how it is calculated ?}

tx_raw<71:0>
This variable is defined in {49.2.13.2.2}.

tx_raw_out<71:0>
72-bit vector sent from the output of the Idle control character deletion process to the 64B/66B
encoder. This vector contains two XGMII transfers mapped as shown for tx_raw<71:0>.

Note that the list of variables will be updated per technical decision #45 (http://www.ieee802.org/3/bn/pub-
lic/decisions/decisions.html) once EPoC-specific FEC and PMD overhead details are settled.

101.3.3.1.3 Counters

countDeleteF
TYPE: 16-bit unsigned integer
Counts the number of 72-bit vectors that need to be deleted from the received data stream as
part of the FEC overhead compensation sub-process.

countDeleteP
TYPE: 16-bit unsigned integer
Counts the number of 72-bit vectors that need to be deleted from the received data stream as
part of the data rate adaptation sub-process.

PCS_Rate XGMII_Rate
PHY_DSize

PHY_DSize PHY_OSize+
-----------------------------------------------------------------=
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countIdleF
TYPE: 16-bit unsigned integer
Counts the number of 72-bit vectors containing Idle control characters or other control vectors
as part of the FEC overhead compensation sub-process.

countIdleP
TYPE: 16-bit unsigned integer
Counts the number of 72-bit vectors containing Idle control characters or other control vectors
as part of the data rate adaptation sub-process.

countVectorF
TYPE: 16-bit unsigned integer
Counts the number of 72-bit vectors transmitted after the removal of Idle characters as part of
the FEC overhead compensation sub-process.

countVectorP
TYPE: 16-bit unsigned integer
Counts the number of 72-bit vectors transmitted after the removal of Idle characters as part of
the data rate adaptation sub-process.

Note that the list of counters will be updated per technical decision #45 (http://www.ieee802.org/3/bn/pub-
lic/decisions/decisions.html) once EPoC-specific FEC and PMD overhead details are settled.

101.3.3.1.4 Functions

T_TYPE(tx_raw<71:0>)
This function is defined in {49.2.13.2.3}.

Note that the list of functions will be updated per technical decision #45 (http://www.ieee802.org/3/bn/pub-
lic/decisions/decisions.html) once EPoC-specific FEC and PMD overhead details are settled.

101.3.3.1.5 State diagrams

The CLT PCS shall perform the Idle control character deletion process as shown in Figure 101–4 (data rate
adaptation sub-process) and in Figure 101–5 (FEC overhead compensation sub-process), in the order shown
in {Figure 101-X1}. The CNU PCS shall perform the Idle control character deletion process as shown in
Figure 101–6 (data rate adaptation sub-process) and in Figure 101–7 (FEC overhead compensation sub-pro-
cess), in the order shown in {Figure 101-X1}. In case of any discrepancy between state diagrams and the
descriptive text, the state diagrams prevail.
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Figure 101–4—CLT Idle control character deletion process 
(data rate adaptation sub-process)

BEGIN

countVectorP 0
countDeleteP  0

INIT

countDeleteP   

DELETE_IDLES

CLASSIFY_VECTOR_TYPE

UCT

T_TYPE(tx_raw) = (C+E) * 
countDeleteP > 0

ELSE

tx_raw_out<71:0> tx_raw<71:0>
countVectorP + +

SEND_VECTOR

ELSEcountVectorP = PHY_DSize

UCT

countDeleteP += PHY_OSize
countVectorP  0

UPDATE_COUNTERS

UCT

Figure 101–5—CLT Idle control character deletion process 
(FEC overhead compensation sub-process)

BEGIN

countVectorF 0
countDeleteF  0

INIT

countDeleteF   

DELETE_IDLES

CLASSIFY_VECTOR_TYPE

UCT

T_TYPE(tx_raw) = (C+E) * 
countDeleteF > 0

ELSE

tx_raw_out<71:0> tx_raw<71:0>
countVectorF + +

SEND_VECTOR

ELSEcountVectorF = FEC_DSize

UCT

countDeleteF += FEC_OSize
countVectorF  0

UPDATE_COUNTERS

UCT
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BEGIN

countVectorP 0
countDeleteP  0
countIdleP  0

INIT

countDeleteP   

DELETE_IDLES

CLASSIFY_VECTOR_TYPE

UCT

T_TYPE(tx_raw) = (C+E) * 
countDeleteP > 0

ELSE

tx_raw_out<71:0> tx_raw<71:0>
countVectorP ++

SEND_VECTOR

ELSEcountVectorP = PHY_DSize

UCT

countDeleteP += PHY_OSize
countVectorP  0

UPDATE_COUNTERS

UCT

NEXT_VECTOR_READY

countIdleP > delayBound

countVectorP  2
countDeleteP  0
countIdleP  delayBound 

RESET_ALIGNMENT

UCT

ELSE

countIdleP  0  

SEND_DATA

T_TYPE(tx_raw)  (C+E)

countIdleP   

SEND_IDLE

UCT UCT

Figure 101–6—CNU Idle control character deletion process 
(data rate adaptation sub-process)
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Note that Figure 101–4, Figure 101–6, Figure 101–6, and Figure 101–7 will be updated per technical decision
#45 (http://www.ieee802.org/3/bn/public/decisions/decisions.html) once EPoC-specific FEC and PMD over-
head details are settled, as well as the burst structure is defined.

Figure 101–7—CNU Idle control character deletion process 
(FEC overhead compensation sub-process)

BEGIN

countVectorF 0
countDeleteF  0
countIdleF  0

INIT

countDeleteF   

DELETE_IDLES

CLASSIFY_VECTOR_TYPE

UCT

T_TYPE(tx_raw) = (C+E) * 
countDeleteF > 0

ELSE

tx_raw_out<71:0> tx_raw<71:0>
countVectorF ++

SEND_VECTOR

ELSEcountVectorF = FEC_DSize

UCT

countDeleteF += FEC_OSize
countVectorF  0

UPDATE_COUNTERS

UCT

NEXT_VECTOR_READY

countIdleF > delayBound

countVectorF  2
countDeleteF  0
countIdleF  delayBound 

RESET_ALIGNMENT

UCT

ELSE

countIdleF  0  

SEND_DATA

T_TYPE(tx_raw)  (C+E)

countIdleF   

SEND_IDLE

UCT UCT
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101.3.3.2 64B/66B Encode

The 64B/66B encoder shall perform the functions specified in {Figure 49–16}. The 64B/66B encoding pro-
cess is as described in {49.2.4}, with the following exceptions:

a) the 64B/66B encode process in the EPoC PCS operates on 72-bit vectors obtained from the output of
the Idle control character deletion process (see 101.3.3.1), rather than directly from the XGMII; and 

b) the 64B/66B encode process in the EPoC PCS operates on bursty data stream produced by the Idle
control character deletion process, unlike in 10GBASE-R PCS, where data stream to the input of the
64B/66B encoder is taken directly from the XGMII and hence continuous. 

101.3.3.3 FEC encoding process (FDD)

The {EPoC_PMD_Name} encodes the transmitted data using a systematic Low-Density Parity-Check
(LDPC) (FC, FP) code. A LDPC encoder encodes FP information bits  into a codeword

by adding FR parity bits  obtained so that

where H is an FR × FC binary matrix containing mostly ‘0’ and relatively few ‘1’, called low-density parity-
check matrix. (see [1] and [2]). The detailed description of such parity check matrices is given in 101.3.2.2.

{to be included in informative references: [1] R. G. Gallager, “Low density parity check codes,” IRE Trans.
Inform. Theory, vol. IT-8, pp. 21–28, Jan. 1962.; [2] T. Richardson and R. Urbanke, “Modern Coding The-
ory," Cambridge University Press, 2008}

The CLT {EPoC_PMD_Name} PCS operating on amplified CCDN shall encode the transmitted data using
one of the LDPC (FC, FP) codes per Table 101–6, as selected using register TBD. The CNU
{EPoC_PMD_Name} PCS operating on amplified CCDN shall encode the transmitted data using one of the
LDPC (FC, FP) codes per Table 101–7, as selected using register TBD.  

Annex 101A gives an example of LDPC (FC, FP) FEC encoding. {we will need to select one of the codes
from the family of codes we use in either downstream or upstream and then generate examples}

Table 101–6—LDCP codes used by the CLT {EPoC_PMD_Name} PCS for amplified CCDN
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101.3.3.3.1 LDPC matrix definition

The low-density parity check matrix H for LDPC (FC, FP) encoder can be divided into blocks of L2 sub-
matrices. Its compact circulant form is represented by an m × n block matrix:

where the submatrix Hi,j is an L × L all-zero submatrix or a cyclic right-shifted identity submatrix. The last
n–m sub-matrix columns represent the parity portion of the matrix. Moreover, nL = FC, mL = FP and the
code rate is (n–m)/n = (FC–FP)/FC. In this specification, the sub-matrix size L is called the lifting factor. 

In this specification, the sub-matrix Hi,j is represented by a value in {-1, 0,…, L-1}, where a ‘-1' value repre-
sents an all-zero submatrix, and the remaining values represent an L × L identity submatrix cyclically right-
shifted by the specified value. Such representation of the parity-check matrix is called a base matrix.

Table 101–8 presents a 5 × 45 base matrix of the low-density parity-check matrix H for LDPC (16200,
14400) code listed in Table 101–6 for downstream and Table 101–7 for upstream, respectively. The lifting
factor of the matrix is L=360. 

Table 101–9 presents a 5 × 33 base matrix of the low-density parity-check matrix H for LDPC (5940, 5040)
code listed in Table 101–7 for upstream. The lifting factor of the matrix is L=180. 

Table 101–10 presents a 5 × 20 base matrix of the low-density parity-check matrix H for LDPC (1120, 840)
code listed in Table 101–7 for upstream. The lifting factor of the matrix is L=56. 

101.3.3.3.2 LDPC encoding process within CLT (downstream)

The process of padding FEC codewords and appending FEC parity octets in the {EPoC_PMD_Name} CLT
transmitter is illustrated in Figure 101–8. 

Table 101–7—LDCP codes used by the CLT {EPoC_PMD_Name} PCS for amplified CCDN
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Table 101–8—LDPC (16200, 14400) code matrix

Columns
Rows

1 2 3 4 5

1 93 274 134 -1 253

2 271 115 355 -1 273

3 -1 329 175 184 90

4 83 338 24 70 -1

5 26 124 253 247 -1

6 208 -1 242 14 151

7 245 293 -1 22 311

8 200 -1 187 7 320

9 -1 69 94 285 339

10 175 64 26 54 -1

11 331 342 87 -1 295

12 17 -1 302 352 148

13 86 88 -1 26 48

14 -1 139 191 108 91

15 337 -1 323 10 62

16 -1 137 22 298 100

17 238 212 -1 123 232

18 81 -1 245 139 146

19 -1 157 294 117 200

20 307 195 240 -1 135

21 -1 357 84 336 12

22 165 81 76 49 -1

23 -1 194 342 202 179

24 47 1 345 359 -1

25 76 159 174 342 -1

26 73 56 269 -1 232

27 150 72 329 224 -1

28 349 126 -1 106 21

29 139 277 214 -1 331

30 331 156 -1 273 313

31 118 32 -1 177 349

32 345 111 -1 245 34
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33 27 175 -1 98 97

34 294 -1 218 355 187

35 -1 306 104 178 38

36 145 224 40 176 -1

37 279 -1 197 147 235

38 97 206 73 -1 52

39 106 -1 229 280 170

40 160 29 63 -1 58

41 143 106 -1 -1 -1

42 -1 334 270 -1 -1

43 -1 -1 72 221 -1

44 -1 -1 -1 208 257

45 -1 -1 -1 -1 0

Table 101–9—LDCP (5940, 5040) code matrix

Columns
Rows

1 2 3 4 5

1 142 54 63 28 52

2 158 172 11 160 159

3 113 145 112 102 75

4 124 28 114 44 74

5 92 55 61 8 46

6 44 19 123 84 71

7 93 159 72 126 42

8 70 22 55 9 11

9 172 96 114 169 108

10 3 12 20 174 153

11 25 85 53 147 -1

12 44 -1 114 24 72

13 141 128 42 145 -1

14 160 5 33 -1 163

Table 101–8—LDPC (16200, 14400) code matrix (continued)

Columns
Rows

1 2 3 4 5
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15 50 158 4 26 -1

16 45 120 66 -1 9

17 118 51 163 -1 2

18 84 171 50 -1 168

19 -1 65 46 67 158

20 64 141 17 82 -1

21 66 -1 175 4 1

22 97 42 -1 177 49

23 1 83 -1 151 89

24 115 7 -1 131 63

25 8 -1 92 139 179

26 108 39 -1 117 10

27 -1 121 41 36 75

28 -1 84 138 18 161

29 11 101 -1 -1 -1

30 -1 171 34 -1 -1

31 -1 -1 74 23 -1

32 -1 -1 -1 8 177

33 -1 -1 -1 -1 19

Table 101–10—LDCP (1120, 840) code matrix

Columns
Rows

1 2 3 4 5

1 5 0 12 0 36

2 14 35 28 51 6

3 12 1 22 16 3

4 1 26 46 31 51

5 2 0 3 13 4

6 37 10 16 39 19

7 45 16 51 27 4

8 26 16 2 33 45

Table 101–9—LDCP (5940, 5040) code matrix (continued)

Columns
Rows

1 2 3 4 5
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The 64B/66B encoder produces a stream of 66-bit blocks, which are then delivered to the FEC encoder. The
FEC encoder accumulates BQ (see Table 101–6) of these 66-bit blocks to form the payload of a FEC code-
word, removing the redundant first bit (i.e., sync header bit <0>) in each 66-bit block received from the
64B/66B encoder. The first bit <0> of the sync header in the 66-bit block in the transmit direction is guaran-
teed to be the complement of the second bit <1> of the sync header – see 49.2.4.3 for more details.

Next, the FEC encoder calculates CRC40 (see ) over the aggregated BQ 65-bit blocks, placing the resulting
40 bits of CRC40 code immediately after the BQ 65-bit blocks, forming the payload of the FEC codeword.
Finally, the FEC encoder prepends BP (see Table 101–6) padding bits (with the binary value of “0”) to the
payload of the FEC codeword as shown in Figure 101–8. 

This resulting data is then LDPC-encoded, resulting in the FR bits of parity data. The first 25 bits of parity
data are inserted into the 65-bit block carrying CRC40 code, complementing it. The remaining FR-25 bits of
parity data is then divided into CQ 65-bit blocks. Note that 65-bit blocks carrying CRC40 data and parity
data do not include sync header. The last 65-bit block of the parity data contains CPL bits of parity data, and
the remaining CP bits are filled with padding (binary “0”).

101.3.3.3.3 LDPC codeword transmission order within CLT (downstream)

Once the process of calculating FEC parity is complete, the payload portion of the FEC codeword and the
parity portion of the FEC codeword are then transferred towards the Data Detector, one 65-bit block at a
time. Note that the BP padding bits used to generate the FEC codeword are not transmitted towards the Data
Detector. The CP padding bits in the last parity codeword (block number CQ) are transmitted towards the
Data Detector.

9 24 34 25 8 48

10 0 4 29 27 9

11 3 2 19 53 -1

12 -1 23 18 13 11

13 34 0 52 -1 22

14 7 51 -1 52 23

15 46 -1 37 33 43

16 10 49 -1 -1 -1

17 -1 20 34 -1 -1

18 -1 -1 39 38 -1

19 -1 -1 -1 7 14

20 -1 -1 -1 -1 1

Table 101–10—LDCP (1120, 840) code matrix (continued)

Columns
Rows

1 2 3 4 5
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101.3.3.3.4 LDPC encoding process within CNU (upstream)

{the upstream FEC encoding for CNU will be described when we have a consistent proposal on how to mix
three different FEC codes into a single transmission slot}

101.3.3.3.5 LDPC codeword transmission order within CNU (upstream)

{the content of this subclause ought to be quite similar with the content of 101.3.3.3.4}

Figure 101–8—PCS Transmit bit ordering within CLT (downstream)
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101.3.3.3.6 CRC40

{the content of this subclause will provide details about CRC40 used in EPoC to guarantee MTTFPA}

101.3.3.3.7 State diagrams

101.3.3.3.7.1 Constants

BP
VALUE: see Table 101–6 for downstream FEC, Table 101–7 for upstream FEC
This constant represents the number of padding bits within the payload portion of the FEC
codeword.

BQ
VALUE: see Table 101–6 for downstream FEC, Table 101–7 for upstream FEC
This constant represents the number of 65-bit blocks within the payload portion of the FEC
codeword.

CP
VALUE: see Table 101–6 for downstream FEC, Table 101–7 for upstream FEC
This constant represents the number of padding bits within the last 65-bit block of the parity
portion of the FEC codeword.

CQ
VALUE: see Table 101–6 for downstream FEC, Table 101–7 for upstream FEC
This constant represents the number of 65-bit blocks within the parity portion of the FEC code-
word.

FP
VALUE: see Table 101–6 for downstream FEC, Table 101–7 for upstream FEC
This constant represents the number of bits within the payload portion of the FEC codeword.

FR
VALUE: see Table 101–6 for downstream FEC, Table 101–7 for upstream FEC
This constant represents the number of bits within the parity portion of the FEC codeword.

101.3.3.3.7.2 Variables

blockCount
TYPE: 16-bit unsigned integer
This variable represents the number of either 65-bit blocks or 66-bit blocks.

CLK
TYPE: Boolean
This Boolean is true on every negative edge of TX_CLK (see 46.3.1) and represents instances
of time at which a 66-bit block is passed from the output of the 64B/66B encoder into the FEC
encoder. This variable is reset to false upon read.

dataPayload<FP-1:0>
TYPE: Bit array
This array represents the payload portion of the FEC codeword, accounting for the necessary
padding. It is initialized to the size of FP bits and filled with the binary value of “0”. 

dataParity<FR-1+CP:0>
TYPE: Bit array
This array represents the parity portion of the FEC codeword, accounting for the necessary
padding. It is initialized to the size of FR + CP bits and filled with the binary value of “0”. 
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FIFO_FEC_TX
TYPE: Array of 65-bit blocks
A FIFO array used to store 65-bit blocks, inserted by the input process and retrieved by the
output process in the FEC encoder.

loc
TYPE: 16-bit unsigned integer
This variable represents the position within the given bit array.

SH_CTRL
See 76.3.2.5.2

SH_DATA
See 76.3.2.5.2

sizeFifo
TYPE: 16-bit unsigned integer
This variable represents the number of 65-bit blocks stored in the FIFO. 

tx_coded<65:0>
TYPE: 66-bit block
This 66-bit block contains 64B/66B encoded data from the output of 64B/66B encoder. The
format for this data block is shown in Figure 49–7. The left-most bit in the figure is
tx_coded<0> and the right-most bit is tx_coded<65>.

tx_coded_out<64:0>
TYPE: 65-bit block
This 65-bit block contains the output of the FEC encoder being passed towards the Data Detec-
tor. The left-most bit is tx_coded_out<0> and the right-most bit is tx_coded_out<64>.

101.3.3.3.7.3 Functions

calculateCrc ( ARRAY_IN )
This function calculates CRC40 for data included in ARRAY_IN.

calculateParity( ARRAY_IN )
This function calculates LDPC parity (for the code per Table 101–6 or Table 101–7) for data
included in ARRAY_IN.

resetArray( ARRAY_IN )
This function resets the content of ARRAY_IN, removing all the elements within ARRAY_IN
and setting its size to 0. 

removeFifoHead( ARRAY_IN )
This function removes the first block in ARRAY_IN and decrements its size by 1.
removeFifoHead( ARRAY_IN )
{
ARRAY_IN[0] = ARRAY_IN[1]
ARRAY_IN[1] = ARRAY_IN[2]
...
ARRAY_IN[sizeFifo-2] = ARRAY_IN[sizeFifo-1]
sizeFifo --
}

101.3.3.3.7.4 Messages

TBD
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101.3.3.3.7.5 State diagrams

The CLT PCS shall implement the LDPC encoding process, comprising the input process as shown in
Figure 101–9 and the output process as shown in Figure 101–10. The CNU PCS shall implement the LDPC
encoding process, comprising the input process as shown in Figure 101–9 and the output process as shown
in Figure 101–10. 

In case of any discrepancy between state diagrams and the descriptive text, the state diagrams prevail.

 

Figure 101–9—FEC encoder, input process state diagram

BEGIN

WAIT_FOR_BLOCK

tx_coded<65:0> * 
(tx_coded<1:0> = SH_DATA + 
tx_coded<1:0> = SH_CTRL)

FIFO_FEC_TX[sizeFifo] tx_coded<65:1>  
sizeFifo ++

AGGREGATE_BLOCK

UCT

sizeFifo  0

INIT
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Figure 101–10—FEC encoder, output process state diagram (CLT)

BEGIN

loc 0
blockCount 0
resetArray( dataPayload )
resetArray( dataParity )
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dataParity calculateParity( dataPayload )
tx_coded_out<39:0> dataPayload<loc+39:loc>
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tx_coded_out<64:0> FIFO_FEC_TX[0]
removeFifoHead( FIFO_FEC_TX )
loc += 65
blockCount ++ 

AGGREGATE_BQ_BLOCKS

INIT

CLK

tx_coded_out<64:0> dataParity<loc+64:loc>
loc += 65 
blockCount ++

SEND_PARITY
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101.3.4 PCS receive function

In the CLT, the PCS receive function operates in a burst fashion (for both FDD and TDD modes) at the data
rate of up to 10 Gb/s, depending on the allocated RF spectrum and the configured operation mode. In the
CNU, the PCS transmit function operates in a continuous (FDD mode) or burst (TDD mode) fashion at the
data rate of up to 10 Gb/s, depending on the allocated RF spectrum and the configured operation mode.
Figure 101–1 illustrates the receive direction of CNU PCS and Figure 101–3 illustrates the receive direction
of the CLT PCS.

In the receive direction, the EPoC PCS includes a mandatory FEC decoder, followed by a 64B/66B decoder
and an Idle control character insertion function performing the function of data rate adaptation and a FEC
overhead compensation.

101.3.4.1 FEC decoding process

The {EPoC_PMD_Name} decodes the received data using LDPC (FC, FP) code. The CLT
{EPoC_PMD_Name} PCS operating on amplified CCDN shall decode the received data using one of the
LDPC (FC, FP) codes per Table 101–2, as selected using register TBD. The CNU {EPoC_PMD_Name}
PCS operating on amplified CCDN shall decode the received data using one of the LDPC (FC, FP) codes per
Table 101–1, as selected using register TBD.

Annex 101B gives an example of LDPC (FC, FP) FEC decoding. {we will need to select one of the codes
from the family of codes we use in either downstream or upstream and then generate examples}

101.3.4.1.1 LDPC decoding process within CLT (upstream)

{the upstream FEC decoding for CLT will be described when we have a consistent proposal on how to mix
three different FEC codes into a single transmission slot}

101.3.4.1.2 LDPC decoding process within CNU (downstream)

The process of decoding FEC codewords in the {EPoC_PMD_Name} CNU receiver is illustrated in
Figure 101–11. 

{FEC codeword alignment needs to be tackled somewhere between the PMA and the bottom of the PCS –
we had some proposals on how to find FEC codeword lock in the downstream, but I am not sure we base-
lined anything with sufficient level of detail to actually put it into the draft}

Once the alignment to FEC codeword is found, the {EPoC_PMD_Name} CNU receiver aggregates the total
of BQ + 1 + CQ 65-bit blocks received from the PMA, forming the FEC payload (blocks number 1 to BQ,
and bits <0> through <39> from the following 65-bit block) and the FEC parity (bits <40> through <64>
from the 65-bit block following payload portion of the FEC codeword and followed by blocks number 1 to
CQ) portions of the codeword. Note that the CP padding bits in the last parity codeword (block number CQ)
are locally generated within the PMA and transmitted to the PCS. 

Next, BP padding bits are inserted immediately after the end of the CRC40 data, and then the last 65-bit
block (number CQ) of the parity portion of FEC codeword is truncated, removing the last CPL bits, forming
the input into the FEC decoder. 

The FEC decoder produces the FEC payload portion of the codeword with the size of FP (in bits), where bits
<FP-BP-1> ... <FP-1> contain padding (with the binary value of “0”). Next, the CRC40 is calculated over the
remaining 65-bit blocks 1 through BQ and then compared with the value of CRC40 retrieved from the
received FEC codeword. If both CRC40 codes match, the decoded FEC codeword is treated as error-free.
Otherwise, the decoded FEC codeword is treated as errored. The behavior of the FEC decoder in the pres-



56

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

ence of CRC40 code failure depends on status of the user-configurable option to indicate an uncorrectable
FEC codeword.

Finally, the FEC decoder prepends each of the BQ 65-bit blocks with bit <0> of the sync header containing
the binary inverse of the value carried in bit <1> of the sync header, producing 66-bit blocks. This also guar-
antees that properly decoded blocks meet the requirements of 49.2.4.3. 

The FEC decoder in the CNU shall provide a user-configurable option to indicate an uncorrectable FEC
codeword (due to an excess of symbols containing errors) to higher layers. If this user-configurable option is
enabled and the calculated value of CRC40 does not match the value of CRC40 retrieved from the received
FEC codeword, the FEC decoder replaces bit <0> and <1> in the sync headers in all BQ blocks with the
binary value of “11”. If this user-configurable option is disabled, the FEC decoder does not make any further
changes to the sync headers in all BQ blocks.

Each resulting 66-bit block is then fed into the 64B/66B decoder, removing the sync header information (bit
<0> and bit <1>), which is used to generate control signaling for the XGMII. Finally, the resulting 64-bit
block is then separated into two 32-bit portions, which are transmitted across the XGMII on two consecutive
transfers, with the proper control signaling retrieved from the sync header information retrieved in the
64B/66B decoder.

101.3.4.1.3 State diagrams

101.3.4.1.3.1 Constants

BP
see 101.3.3.3.7

BQ
see 101.3.3.3.7

CQ
see 101.3.3.3.7

dataInSize
VALUE: (BQ + 1 + CQ) × 65 + BP
This constant represents the size of the dataIn array, containing the combination of the payload
portion of the FEC codeword, the parity portion of the FEC codeword, CRC40, and all the nec-
essary padding.

IDLE
TYPE: 66-bit vector
This constant represents /I/ character with 64B/66B encoding, as defined in 49.2.4.7.
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101.3.4.1.3.2 Variables

blockCount
see 101.3.3.3.7

CLK
see 101.3.3.3.7

dataCrcA<39:0>
TYPE: Bit array

Figure 101–11—PCS Receive bit ordering within CNU (downstream)
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This array represents the CRC40 recovered from the payload portion of the FEC codeword
prior to the FEC decoding process. This array is initialized to the size of 40 bits and filled with
the binary value of “0”.

dataCrcB<39:0>
TYPE: Bit array
This array represents the CRC40 calculated over BQ 65-bit blocks in the payload portion of the
FEC codeword after the FEC decoding process. This array is initialized to the size of 40 bits
and filled with the binary value of “0”.

dataIn<(dataInSize-1:0>
TYPE: Bit array
This array represents the combination of the payload portion of the FEC codeword, the parity
portion of the FEC codeword, CRC40, and all the necessary padding. It is initialized to the size
of dataInSize bits and filled with the binary value of “0”. 

dataOut<FP-1:0>
TYPE: Bit array
This array represents the combination of the payload portion of the FEC codeword, CRC40,
and all the necessary padding. It is initialized to the size of FP bits and filled with the binary
value of “0”.

FIFO_FEC_RX
TYPE: Array of 66-bit blocks
A FIFO array used to store tx_coded<65:0> blocks, inserted by the input process in the FEC
decoder, while encoded data is then sent to 64B/66B decoder for processing and transmission
towards the XGMII.

loc
see 101.3.3.3.7

rx_coded_in<64:0>
TYPE: 65-bit block
This 65-bit block contains the input into the FEC decoder being passed from PMA. The left-
most bit is rx_coded_in<0> and the right-most bit is rx_coded_in<64>.

sizeFifo
see 101.3.3.3.7

syncFec
TYPE: Boolean
This variable indicates whether the FEC codeword alignment was found (value equal to true)
or not (value equal to false). 

tx_coded<65:0>
see 101.3.3.3.7

101.3.4.1.3.3 Functions

calculateCrc ( ARRAY_IN )
see 101.3.3.3.7

decodeFec( ARRAY_IN )
This function performs FEC decoding (for the code per Figure 101–6 or Figure 101–7) for data
included in ARRAY_IN, comprising the combination of the payload portion of the FEC code-
word, the parity portion of the FEC codeword, CRC40, and all the necessary padding.

resetArray( ARRAY_IN )
see 101.3.3.3.7
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101.3.4.1.3.4 Messages

TBD

101.3.4.1.3.5 State diagrams

The CNU PCS shall implement the LDPC decoding process, comprising the input process as shown in
Figure 101–12 and the output process as shown in Figure 101–10.

In case of any discrepancy between state diagrams and the descriptive text, the state diagrams prevail.



60

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

 

BEGIN

loc 0
blockCount 0
resetArray( dataIn )
resetArray( dataOut )

RESET

UCT
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Q

CLK * blockCount = BQ

dataOut decodeFec( dataIn )
dataCrcB calculateCrc( dataOut<BQ×65-1:0> )
loc 0
blockCount 0

DECODE_CALCULATE_CRC40

dataCrcA != dataCrcB

dataIn<loc+64:loc> rx_coded_in<64:0>
loc += 65
blockCount ++ 

AGGREGATE_BQ_BLOCKS

sizeFifo 0

INIT

CLK * syncFec = true

dataIn<loc+39:loc> rx_coded_in<39:0>
dataCrcA rx_coded_in<39:0>
loc += (40 + BP)
dataIn<loc+24:loc> rx_coded_in<64:40>
loc += 25
blockCount 0 

AGGREGATE_NEXT_BLOCK
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Q

CLK * blockCount = CQ

dataIn<loc+64:loc> rx_coded_in<64:0>
loc += 65
blockCount ++ 

AGGREGATE_CQ_BLOCKS

CLK

dataCrcA = dataCrcB

tx_coded<1:0>  11
decodeFailure ++

DECODE_FAIL

tx_coded<65:2> dataOut<loc+64:loc+1>
FIFO_FEC_RX[sizeFifo] tx_coded<65:0>
sizeFifo ++
loc += 65
blockCount ++

SEND_DATA_OUT

tx_coded<0:0>  !dataOut<loc:loc>
tx_coded<1:1>  dataOut<loc:loc>

DECODE_SUCCESS

UCTUCT
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Figure 101–12—FEC decoder, input process state diagram (CNU)
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101.3.4.2 Codeword Error Monitor

101.3.4.3 Descrambler / Interleaver

Figure 101–13—FEC decoder, output process state diagram (CNU)

BEGIN

WAIT_FOR_BLOCK

CLK * sizeFec != 0

tx_coded<65:0>  FIFO_FEC_RX[0]
removeFifoHead( FIFO_FEC_RX )

SEND_OUT_BLOCK

INIT

tx_coded<65:0>  IDLE

SEND_OUT_BLOCK

CLK * sizeFec = 0

UCT

UCT
UCT
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101.3.4.4 64B/66B Decode

The 64B/66B decoder shall perform the functions specified in {Figure 49–17}. The 64B/66B decoding pro-
cess is as described in {49.2.11}, with the following exceptions:

a) the 64B/66B decode process in the EPoC PCS produces 72-bit vectors fed into the Idle control char-
acter insertion process (see 101.3.4.5), rather than directly into the XGMII; and 

b) the 64B/66B decode process in the EPoC PCS operates on bursty data stream produced by the FEC
decoder, unlike in 10GBASE-R PCS, where data stream to the input of the 64B/66B decoder is
taken directly from the descrambler and hence continuous. 
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101.3.4.5 Idle control character insertion process 

In the receiving PCS, the Idle control character insertion process inserts Idle control characters into the data
stream with gaps as received from the FEC decoder and 64B/66B decoder, adjusting the effective PCS and
PMD data rate to the data rate enforced by the MAC Control (as defined in {Clause 102}). Effectively, the
Idle control character insertion process fills in the gaps created after the removal of FEC parity data, as well
as compensates for the derating of the EPoC PMD relative to the EPoC MAC. 

The Idle control character insertion process (see {Figure 101-3}) is composed of:

a) a receive process, receiving 72-bit vectors from the 64B/66B decoder and writing them into the Idle
Insertion FIFO (called FIFO_II); and 

b) a transmit process, reading 72-bit vectors from FIFO_II and transferring them to the XGMII. 

The receive process receives 72-bit vectors from the 64B/66B decoder at a slower data rate than the nominal
XGMII data rate for two reasons:

a) the FEC parity data is removed within the FEC decoder, leaving behind gaps in the data stream; and 

b) the data rate supported by EPoC PCS and PMD is lower than the data rate supported by MAC Con-
trol Client, requiring data rate adaptation between the PCS and MAC. 

The transmit process outputs 72-bit vectors at the nominal XGMII data rate. 

To match the difference in data rates between the receive process and the transmit process, the Idle control
character insertion process inserts additional 72-bit vectors containing Idle control characters. The additional
blocks are inserted between frames and not necessarily at the same locations where FEC parity data was
removed within the FEC decoder. 

101.3.4.5.1 Constants

FIFO_II_SIZE
TYPE: 16-bit unsigned integer
This constant represents the size of Idle Insertion FIFO buffer. The size of this buffer is
selected in such a way that it is able to accommodate the number of 66-bit vectors sufficient to
fill the gap introduced by removing the FEC parity data for a maximum size MAC frame, and
compensate for the maximum supported difference between the MAC rate and PMD rate.
Value: {TBD}

It seems that the FIFO_II_SIZE depends on the two following items: (a) the type of FEC and the size of FEC
parity that is removed from data stream at regular intervals; and (b) the data rate differential between the
PMD and the MAC. Every time the data rate changes, the size of FIFO_II may need to be adapted as well, to
make sure that no additional delay / jitter is introduced. Whether such a change is needed, needs to be stud-
ied in more detail when more PMD/PCS details are available. 

IDLE_VECTOR
TYPE: 72-bit binary array
This constant represents a 72-bit vector containing Idle control characters.

LBLOCK_R
This constant is defined in {49.2.13.2.1}.

Note that the value of FIFO_II_SIZE, as well as the list of constants will be updated per technical decision #43
and #45 (http://www.ieee802.org/3/bn/public/decisions/decisions.html) once EPoC-specific FEC and PMD
overhead details are settled.
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101.3.4.5.2 Variables

BEGIN
TYPE: Boolean
This variable is used when initiating operation of the state diagram. It is set to true following
initialization and every reset.

FIFO_II
TYPE: Array of 72-bit vectors
The FIFO_II buffer is used to perform data rate adaptation between XGMII data rate and the
EPoC PMD data rate. Upon initialization, all elements of this array are filled with instances of
IDLE_VECTOR. The FIFO_II buffer has the size of FIFO_II_SIZE (see 101.3.4.5.1).

RX_CLK
TYPE: Boolean
This variable represents the RX_CLK signal defined in {46.3.2.1}.

rx_raw_in<71:0>
TYPE: 72-bit binary array
This variable represents a 72-bit vector received from the output of the 64B/66B decoder.
RXD<0> through RXD<31> for the second transfer are placed in rx_raw<40> through
rx_raw<71>, respectively.

rx_raw_out<71:0>
TYPE: 72-bit binary array
This variable represents a 72-bit vector passed from the Idle control character insertion process
to XGMII. The vector is mapped to two consecutive XGMII transfers as follows:

Bits rx_raw<3:0> are mapped to RXC<3:0> for the first transfer;
Bits rx_raw<7:4> are mapped to RXC<3:0> for the second transfer;
Bits rx_raw<39:8> are mapped to RXD<31:0> for the first transfer;
Bits rx_raw<71:40> are mapped to RXD<31:0> for the second transfer.

countVector
TYPE: 16-bit unsigned integer
This variable represents the number of 72-bit vectors stored in the FIFO_II at the given
moment of time.

101.3.4.5.3 Functions

T_TYPE(rx_raw<71:0>)
This function is defined in {49.2.13.2.3}.

101.3.4.5.4 Messages

DECODER_UNITDATA.indicate(rx_raw_in<71:0>)
A signal sent by the EPoC PCS Receive process, conveying the next received 72-bit vector.

DUDI
Alias for DECODER_UNITDATA.indicate(rx_raw_in<71:0>).

101.3.4.5.5 State diagrams

The CLT and CNU PCS shall perform the Idle control character insertion process as shown in Figure 101–
14. In case of any discrepancy between state diagrams and the descriptive text, the state diagrams prevail.
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Figure 101–14—Idle control character insertion process state diagram

BEGIN

countVector = 0

INIT

rx_raw_out<71:0>  LBLOCK_R

LBLOCK_TO_XGMII

rx_raw_out<71:0> FIFO_II[0]

VECTOR_TO_XGMII

countVector != 0

FIFO_II[0]  FIFO_II[1]
FIFO_II[1]  FIFO_II[2]
. . . 
FIFO_II[countVector-2]  FIFO_II[countVector-1]
countVector – –

SHIFT_FIFO

WAIT_FOR_CLK

UCTUCT

UCT

RX_CLK * !DUDI

FILL_QUEUE

RX_CLK * DUDI

FIFO_II[countVector]  IDLE_VECTOR
countVector + +

INSERT_IDLE

FIFO_II[countVector]  rx_raw_in<71:0>
countVector + +

RECEIVE_VECTOR

ELSET_TYPE(rx_raw_in<71:0>) = (C+S+E) * 
countVector < FIFO_II_SIZE – 1

UCT UCT
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