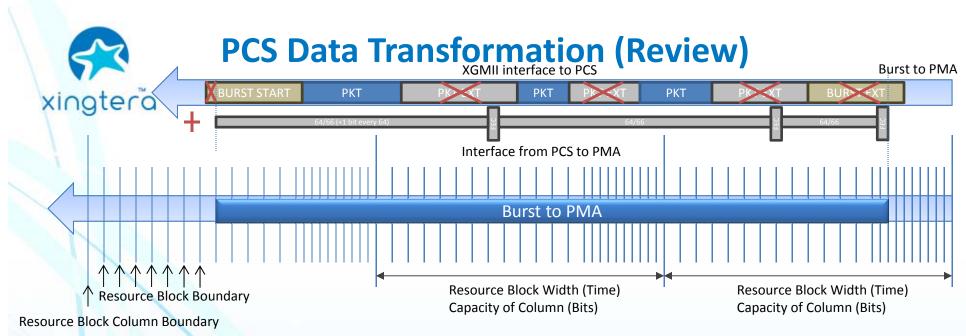
EPoC Upstream Data Detector

Ed Boyd, Xingtera

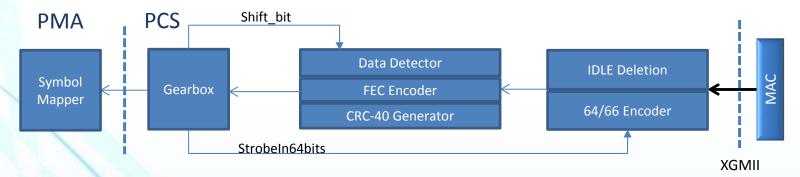
IEEE 802.3bn EPoC – March 2014


Overview

- This presentation is a continuation of the EPoC Upstream (motioned as starting point) from Indian Wells.
 The PCS/PMA interface definition is assumed.
- The Downstream Rate Control functions for the Idle Deletion and Gearbox are also assumed.
- This presentation attempts to define the data detector function for the upstream PCS.

Disclaimers

- This presentation uses the "Long-Short" FEC termination method.
 - Showing only Long-Short simplifies the drawing but contains all of the key functionality to support any of the methods.
 - It is a simple modification to the SM and block diagram to support medium only or Long-Medium-Short.
- This presentation assumes no K/2
 - K/2 requires an addition buffer before or after the data detector that significantly complicates the fixed delay requirement.
- This presentation assumes a single CRC-40 and all parity at the end of burst.
 - Multiple Parity/CRC-40 requires an addition buffer before or after the data detector that significantly complicates the fixed delay requirement.
 - Addition states are also needed in state machine.
- This presentation shows a bit wide description since decisions are made on a bit boundary.
 - This method provides the cleanest and clearest description of the expected behavior.
 - Obviously, a real implementation would make decisions on blocks of bits.


PCS to PMA

- The PCS provides a constant data rate stream of data to the PMA (for a configuration)
- The PCS identifies the bits in a burst and out side of burst (a laser enable equivalent)
- The PCS/PMA are aware of the Resource Boundaries and Resource Block Boundaries in the data stream.
- The data rate is determined by the Resource Block Column Capacity (total bits) over the width of a Resource Block (time).

PCS Data Transformation

- Bits from a burst start are discarded until a Resource Block Boundary is reached.
- Bits for Start Marker are discarded.
- 64/66 encoding and FEC encoding starts on data stream.
- IDLE deletion occurs on the data stream.
- At the end of burst, bits from the burst extension are taken until a Resource block boundary is reached after FEC has been inserted.

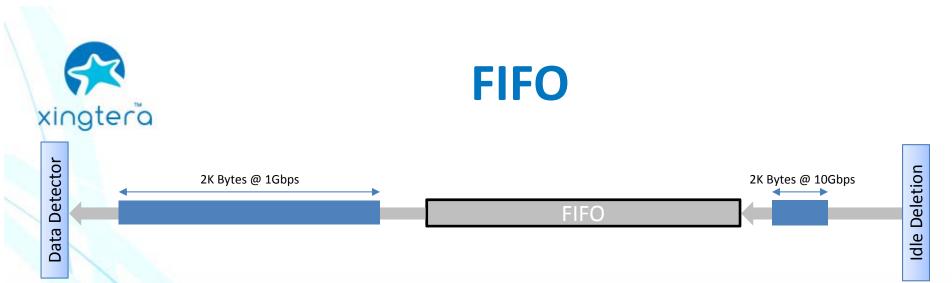
Upstream & Rate Control Review

IDLE Deletion

xingtera

- XGMII will stream packets at 10Gbps.
- IDLEs will be inserted in the MAC between packets to guarantee MAC rate is less than PHY rate.
- The IDLE Deletion block will encode 64 bits into 65 bits and remove excess IDLE characters based on the Gearbox rate control reference.

Gearbox


- The Gearbox will control the data rate through the PCS by a reference signal from the IDLE Deletion.
- The Gearbox will shift out bits for the PMA .

Data Detector Block Diagram xingtera **PLC Configuration** RB_Start[], RB_End[] Data_Detected, Data Detector SM Shift Bit Data_Start Data Detect Timer & counters Out_Bit_Sel **IDLE** Deletion Gearbox FIFO 65_Bit_Vector CRC40 Long FEC MUX Out_Bit Short FEC **IDLE** Char No Xmit IEEE 802.3bn EPoC – March 2014

Data Detect Timer

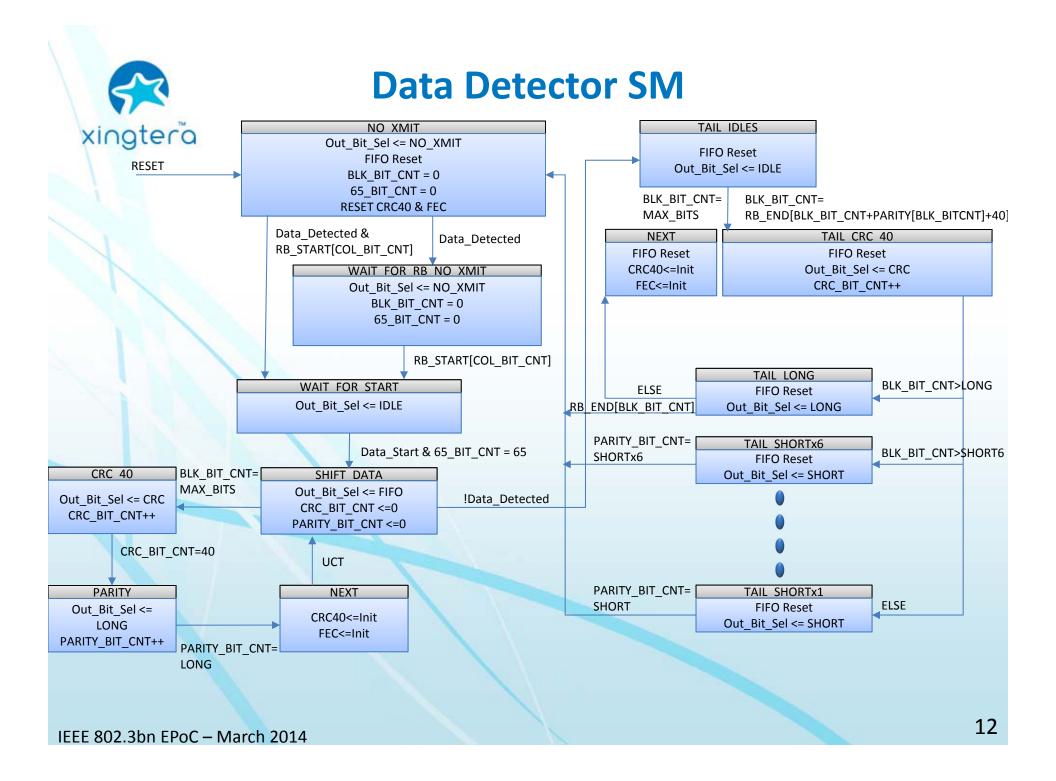
- The Data Detect Timer generates the Data_Detected and Data_Start signals for the Data Detector SM.
- Data_Detected
 - Data_Detected is asserted when a data 65-bit vector is passed to or stored in the FIFO.
 - After Data_Detected, the SM will begin to put out idle bits at the Resource Block Boundary until the Data_Start is asserted and data is released from the FIFO.
 - Data_Detected is deasserted a configured time after the last data has been removed from the FIFO. The configured time should be greater than the IPG at the sustained data rate.
- Data_Start
 - Data_Start is asserted a fixed time delay [10.24MHz clocks] from Data_Detected.
 - This delay must be configured to be longer than largest RB capacity divided by the data_rate. (A couple of hundred bits, a few 65 bit symbols).

- The FIFO provides the rate adaption between the XGMII and the PMA.
- Since the PMA rate is matched by deleting idles between packets, this FIFO will always be empty at the start of burst. (The SM holds it in reset)
- It will be near empty at the start of a packet and near full at the end of a long packet.
- It provides buffer to handle delay for start of burst and insertion of FEC/CRC40.
- FIFO size can be safely sized at 2K Bytes (maximum packet size).

Counters

- All counters are incremented by Shift_Bit from Gearbox
 - Shift_Bit exactly aligns with the PMA input data rate.
- 65_BIT_CNT
 - Counts to 65 to identify 64/66 Vector Boundary
- PARITY_BIT_CNT
 - Counts to the size of the FEC parity size.
- CRC_BIT_CNT
 - Counts to 40 bits to identify the end of the CRC40 checksum.
- BLK_BIT_CNT
 - Counts the bits in a FEC Block payload.
- COL_BIT_CNT
 - Counts the bits in a Resource Block Column.

RB_Start and RB_End Arrays


- Resource Block Start and End Arrays contain the valid start and end bit positions for any burst.
- RB_Start and RB_End are generated in the PHY based the configuration of the Resource Blocks (bit capacity).
- The RB_Start/RB_End size matches the total capacity of a RB Column. (1 bit for every bit in the array).
- RB_Start
 - Indexed by the COL_BIT_CNT to determine when to switch from "NO XMIT" to "IDLE"s at the start of a burst. ("0" continue NOXMIT, "1" start IDLEs)
- RB_End
 - Indexed by the COL_BIT_CNT plus the CRC40 and amount of parity to determine if IDLE insertion can stop at the end of the burst.
 - The amount of parity is determined by a lookup table on the BLK_BIT_CNT.

NOTE: RB_Start and RB_End must be generated for both Odd and Even configuration to support hitless switchover.

SM Overview

- NO_XMIT
 - The State Machine sends "no xmit" bits to the PMA
 - After "Data_Detected" is asserted, the RB_START array is checked for a starting bit position.
- WAIT_FOR_START
 - FEC and CRC40 calculation start on the Data.
 - IDLE vectors are transmitted until the Data_Start (fixed delay from data detected) is asserted.
- SHIFT_DATA
 - Data bits from the FIFO are shifted out to the PMA.
 - CRC-40 and Parity are inserted for the Long code word size when the block size limit is reached.
 - When Data_Detected is deasserted, the FIFO is cleared for the end of burst.
- TAIL_IDLE
 - Idles are inserted until the RB_End array for the current position plus the CRC-40 & Parity Bits indicates a valid ending bit.
 - CRC40 and FEC Parity are added to the end of the burst.
 - SM returns to NO_XMIT

Configuration Switchover

• Upstream Configuration Switchovers will happen between or during bursts.

- Bit Loading changes should be hitless. Data Rate could go up or down.
- Changes to the RB width (time) by changing the number of symbols or CP will require re-registration.

• Start of Burst Timing

- A Laser ON time that is a fixed number of Bytes will not work for EPoC.
- A fixed number of bytes will be a different delay for different data rates.
- Data_Start is a fixed time delay from Data_Detected to eliminate jitter due to data rate changes.

• RB_START & RB_END Arrays

- The RB_START and RB_END arrays must be re-generated for new bit-loading configurations.
- RB_END must account for blocks that span configuration changes.

Gearbox Control

Since the Gearbox controls the switchover, a data rate change will be communicated to the Data Detector by adjusting the Shift_Bit period.

Conclusion

- This presentation provides a description for the data detector that could be converted into text for the standard.
- The design supports hitless switchover and aligns with the Downstream Rate Control and Upstream starting point architectures.
- The Data Detector is complicated enough without functionality that requires a delay buffer (K/2 and Scattered Parity/CRC40).
- More work is needed to define the Grant Length and Grant Slot Size equations for the state machine.
- We may consider providing 64/66 encoding in the data detector to allow for starting on byte boundaries (instead of 64 bit boundaries) to minimize jitter.