HINOC MAC Introduction

Zhang Yu, Zhang Bing, Yan Ke Zhou Xidian University 2013-12-06

Introduction

- Functions and Mechanisms
 - In TDD mode, OFDMA/TDMA supported
 - Up to 64 terminals (HMs) supported
 - Basic Sub-Channel (SC) and extended Sub-Channel introduced to support multiple terminal with different bandwidth
 - Report-Grant mechanism used to realize various dynamic bandwidth allocation
 - Using Ru frame to transmit uplink report simultaneous to realize uplink reports rapidly and simply

Introduction

- Fixed and short MAP cycle used to decrease transmission latency
- Packing and fragmentation mechanisms used to increase throughput and transmission efficiency
- Admission/Maintenance (Adaptive Modulation and Coding)
- Ranging supported to improve protocol efficiency
- ARQ optionally supported to improve reliability of transmission
- Extended Information Sub-frame optionally supported to improve scalability
- MAC protocol is designed based on HINOC2.0 PHY Proposal

MAC Structure

- CS(Convergence Sublayer): adaptation between the function of the CPS and the higher layer entity
 - Address Learning and Forwarding Table Construction
 - Priority Mapping
 - Data Frame Fragmentation/Assembling
 - Data Frame Packing/Unpacking
 - Data Frame Retransmission(Optional)
- **CPS(Common Part Sublayer)**
 - Media Access Control and Channel Allocation
 - Node Admission/Quitting
 - Link Maintenance

higher Layer

HINOC PHY

MAC Frame type

- Frame Type
 - **Signaling Frame**: used for AC/LM QUIT
 - Control Frame: used for channel allocation
 - Data Frame: used for carrying EMAC frame
 - **Broadcast Frame**: for further study

Signaling Frame

- Signaling Frame
 - Downlink signaling frames and uplink signaling frames divided
 - Signaling frames are used in the signaling exchange between HB/HM during the procedure of node admission, node quitting and link maintenance.

Control Frame

- Control Frame
 - Used in queue report and channel allocation
 - Two types of Control Frame are defined:MAP and R Frame
 - MAP frame: used to announce a channel plan by HB ,transmitted in broadcast mode and carried by Cd of PHY
 - R frame: used by HM to transmit queue report to HB, carried by Ru of PHY.
 - all HMs can simultaneously transmit the R frame in one OFDM symbol.
 - The length of MAP and R frame is fixed

Data Frame

- Data Frame
 - Data frame used to carry Ethernet application
 - Carried in Dd/Du of PHY

Thanks!

