Details on Upstream Pilots and Resource Block Configuration for EPoC

Avi Kliger, Broadcom Christian Pietsch, Qualcomm

Scope

- This is a follow-up presentation on kliger_3bn_01_0313
- The intention is to
 - Reduce the number of options as was requested during the Orlando meeting
 - Provide more details on the parameterization
- For the sake of self-containedness of this presentation, also unchanged definitions and rules are repeated

Resource Block

- Resource block (RB)
 - Allocation unit comprised of N contiguous sub-carriers and M OFDMA symbols
 - N*M Resource Elements (RE)
- Each RB can only be allocated to a single CNU
- RBs are mapped to fix frequencies in the upstream channel
- One grant may include one or more RBs.

Data is written horizontally subcarrier by subcarrier to allow time interleaving of codewords

Resource Block Size Considerations

- Number of symbols (M)
 - Equals to the OFDMA Frame size which is determined by the Upstream Interleaver depth
 - Number of symbols should be configured by the CLT according to the usage of Interleaver and its size
- Number of subcarriers (N)
 - Is determined by the granularity
 - Large number of subcarriers provides better frequency tracking performance and lower pilots overhead
 - Smaller number of subcarrier has smaller granularity
- Number of pilots on pilot subcarriers
 - Large provides better tracking and channel estimation
 - Smaller provides lower overhead
 - Selection of pilots is very much dependent on the plant conditions

Resource Elements

- Resource Elements (RE)
 - A RE is the smallest time/frequency resource (one subcarrier in one OFDM symbol)
 - A RE contains a constellation symbol
 - A block of N*M REs composes a RB

Types of REs:

- Data REs
- Pilot REs:
 - Known constellation symbols used for frequency acquisition and channel estimation
 - Interpolation of estimates can be used to avoid pilots on every subcarrier
- Marker REs:
 - Used as delimiters of transmission bursts
 - Start Marker identify the start of a burst and corresponding profile
 - End Marker identify the end of the burst
- Edge Pilot REs:
 - REs on edge subcarriers in a transmission burst used as pilots to avoid extrapolation
 - Typically shared with the marker REs; marker REs are know REs after marker detection.
- Low density pilot:
 - Data symbol with modulation order that carries 4 bits less than other data REs in the RB.

RB Size and Pilots Structure (I)

- A default RB configuration (CONF1) contains 8 subcarriers:
 - The pilot spacing can be 8, 4, 2, or 1 subcarriers
- The pilot spacing in frequency could be profile specific:
 - The choice of pilot spacing depends on pre-equalization quality and channel conditions
 - E.g. some CNUs use a pilot spacing of 8 while others use a pilot spacing of 4
- OFDM symbols in a RB where pilots and low density pilots are:
 - Symbol 1 always contains pilots
 - For $M \ge 2$, symbol M contains low density pilots
 - For $M \ge 5$, symbol 3 has additional pilots and symbol M-2 has additional low density pilots
- The values for M are 1 to 17 depending on interleaver depth

RB Size and Pilots Structure (II)

- An alternative RB configuration (CONF2) contains 4 subcarriers:
 - The pilot spacing can be 4, 2, or 1 subcarriers, but not 8 subcarriers
 - This configuration enhances granularity by making the RBs smaller
 - Suitable for plants where a pilot spacing of 8 subcarriers is not possible
- The MSO decides which RB configuration is suited for their plant
 - Tradeoff between RB granularity, pilot spacing, and pilot overhead
 - Example 1: If M = 4 (interleaving across 4 OFDM symbols), an RB with N = 8 is favorable
 - Example 2: If M = 17 (need for long time interleaver), an RB with N = 4 is favorable

RB size and Pilot Spacing (III)

- Configurable number of OFDM symbols
 - {1 to 17} with 20 uSec symbols
 - 17 corresponds to 400 uSec interleaver depth
 - {1 to 9} with 40 uSec symbols
 - 9 corresponds to 400 uSec interleaver depth
- Configurable number of subcarriers per RB: {4, 8}
- Configurable pilots spacing in frequency (Ps): {1,2,4,8}
- Still open for discussion:
 - Is the RB size configured for the entire plant, or could it be profile specific?
 Probably, it is favorable to have one RB size per plant.
 - Do we need the special case M = 1? Could probably be removed.

Burst Markers

- Start and End Markers indicate the boundaries and profile of a transmission burst
- The markers are detected incoherently, without prior knowledge of the transmission profile
- Number of profile is TBD
- Markers are contained in the first and last RB and do not overwrite pilots
- Marker structure and number of marker REs is TBD

RB Placement For TDD Top split

 RBs are placed symmetrically around the center frequency: One RB covers subcarriers ±Nn+1 to ±N(n+1) where n is the RB index counted from the center frequency

EPoC Upstream Pilots

THANK YOU

Update on EPoC Upstream Pilots

BACKUP

Granularity and RB Size

- pilotlow density pilot
- For a pilot spacing of 8 SCs the finest granularity is 8 SCs per RB.
- A pilot spacing of 4 SCs allows for RBs of 4 and 8 SCs.
- A lower pilot spacing is favorable over smaller RB size.
- The figure here shows the required resources for an example set of data that requires 112 REs for the data