
29

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

101.3.2.3.4 Data Detector process within CNU (upstream)

The {EPoC_PMD_Name} CNU PCS transmit path includes the Data Detector process. This process con-
tains a delay line (represented by the FIFO_FEC_TX buffer) that stores 66-bit blocks received from the out-
put of the 64B/66B encoder to allow insertion of the FEC parity data into the transmitted data stream. In
addition to inserting the FEC parity data into the data stream, the Data Detector process in the
{EPoC_PMD_Name} CNU PCS generates the PMA_SIGNAL.request(tx_enable) primitive to turn the
transmitter on and off at the correct times.

Upon initialization, the ONU transmitter is turned off. When the first 66-bit block containing data arrives at
the FIFO_FEC_TX buffer, the Data Detector process in the {EPoC_PMD_Name} CNU PCS sets the
PMA_SIGNAL.request(tx_enable) primitive to the value ON, instructing the PMD sublayer to start the pro-
cess of turning the transmitter on.

When the FIFO_FEC_TX buffer becomes empty (i.e., contains only 66-bit blocks with Idle control charac-
ters), the Data Detector process in the {EPoC_PMD_Name} CNU PCS sets the
PMA_SIGNAL.request(tx_enable) primitive to the value OFF, instructing the PMD sublayer to start the
process of turning the transmitter off.

Between individual packets, 66-bit blocks with Idle control character arrive at the FIFO_FEC_TX buffer. If
the number of these 66-bit blocks with Idle control characters is insufficient to fill the FIFO_FEC_TX buffer
completely, then the transmitter is not turned off.

The length of the FIFO_FEC_TX buffer at the {EPoC_PMD_Name} CNU PCS shall be set such that the
delay introduced by the FIFO_FEC_TX buffer together with any delay introduced by the PMA sublayer is
long enough to turn the transmitter on and to allow transmission of any additional burst elements, such as
TBD.

Figure 101–1 illustrates the details of the {EPoC_PMD_Name} CNU burst structure. In particular, this fig-
ure shows the details of the necessary burst elements and the FEC protected portions of the burst transmis-
sion, explicitly showing each FEC codeword (FEC CW).

The CNU burst transmission begins with the 65-bit long Start of Burst delimiter (burstStart constant, see
TBD), which facilitates the detection of the start of a newly incoming data burst. When received at the CLT,
the Start of Burst delimiter simplifies allows the FEC codeword alignment for the incoming data stream,
even in the presence of bit errors. The Start of Burst delimiter is not part of the first FEC codeword.

The Start of Burst delimiter is followed by the 65-bit long FEC Selector delimiter (burstFecSelector con-
stant, see TBD), which identifies the specific FEC code used by the CNU to encode data in the given burst.
The FEC Selector delimiter is not part of the first FEC codeword.

The CNU burst ends with the 65-bits long End of Burst delimiter (burstEnd constant, see TBD), which facil-
itates the detection of the end of the current data burst. When received at the CLT, the End of Burst delimiter
allows for the rapid reset of the CLT FEC synchronizer, so that it can search for the next burst. The End of
Burst delimiter is not part of the last FEC codeword.

30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 101–1—Details of CNU burst structure

Start of BurstFEC Selector

TON

TOFF

tim
e

frequency

FEC CW1

FEC CW1

FEC CW1

FEC CW2

FEC CW2

FEC CW2FEC CW3

FEC CW3

FEC CW3

FEC CW4

FEC CW4

FEC CW4FEC CW5

FEC CW5

FEC CW5

FEC CW6

FEC CW6

FEC CW6FEC CW7

FEC CW7

FEC CW7

FEC CW8

FEC CW8

FEC CW8FEC CW9

FEC CW9

FEC CW9

FEC CW10

FEC CW10

FEC CW10FEC CW11

FEC CW11

FEC CW11

FEC CW12

FEC CW12

FEC CW12FEC CW13

FEC CW13

End of Burst FEC CW13

31

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

101.3.2.3.5 LDPC Encode process within CNU (upstream)

The process of padding FEC codewords and appending FEC parity octets in the {EPoC_PMD_Name} CNU
PCS transmit path is illustrated in Figure 101–8.

The 64B/66B encoder produces a stream of 66-bit blocks, which are delivered to the FEC Encode and Data
Detector input process, as shown in Figure 101–8. The FEC Encode and Data Detector input process accu-
mulates BQ (see Table 101-6) of these 66-bit blocks to form the payload of a FEC codeword, removing the
redundant first bit (i.e., sync header bit <0>) in each 66-bit block received from the 64B/66B encoder. The
first bit <0> of the sync header in the 66-bit block in the transmit direction is guaranteed to be the comple-
ment of the second bit <1> of the sync header – see 49.2.4.3 for more details. Only one of the FEC codes
defined in Table 101-6 is active at any time, as selected by register TBD.

Next, the FEC encoder calculates CRC40 (see 101.3.2.3.6) over the aggregated BQ 65-bit blocks, placing the
resulting 40 bits of CRC40 code immediately after the BQ 65-bit blocks, forming the payload of the FEC
codeword. Finally, the FEC encoder prepends BP (see Table 101-6) padding bits (with the binary value of
“0”) to the payload of the FEC codeword as shown in Figure 101–8.

This resulting data is then LDPC-encoded, resulting in the FR (see Table 101-6) bit of parity data. The first
25 bits of parity data are inserted into the 65-bit block carrying CRC40 code, complementing it. The remain-
ing FR-25 bits of parity data is then divided into CQ (see Table 101-6) 65-bit blocks. Note that 65-bit blocks
carrying CRC40 data and parity data do not include sync header. The last 65-bit block of the parity data con-
tains CPL (see Table 101-6) bits of parity data, and the remaining CP (see Table 101-6) bits are filled with
padding (with the binary value of “0”).

101.3.2.3.6 LDPC codeword transmission order within CNU (upstream)

{the content of this subclause ought to be quite similar with the content of 101.3.2.3.5}

101.3.2.3.7 CRC40

{the content of this subclause will provide details about CRC40 used in EPoC to guarantee MTTFPA}

101.3.2.3.8 State diagrams

101.3.2.3.8.1 Constants

BP
VALUE: see Table 101–5 for downstream FEC, Table 101–6 for upstream FEC
This constant represents the number of padding bits within the payload portion of the FEC
codeword.

BQ
VALUE: see Table 101–5 for downstream FEC, Table 101–6 for upstream FEC
This constant represents the number of 65-bit blocks within the payload portion of the FEC
codeword.

CP
VALUE: see Table 101–5 for downstream FEC, Table 101–6 for upstream FEC
This constant represents the number of padding bits within the last 65-bit block of the parity
portion of the FEC codeword.

CQ
VALUE: see Table 101–5 for downstream FEC, Table 101–6 for upstream FEC

32

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

This constant represents the number of 65-bit blocks within the parity portion of the FEC code-
word.

FP
VALUE: see Table 101–5 for downstream FEC, Table 101–6 for upstream FEC
This constant represents the number of bits within the payload portion of the FEC codeword.

FR
VALUE: see Table 101–5 for downstream FEC, Table 101–6 for upstream FEC
This constant represents the number of bits within the parity portion of the FEC codeword.

101.3.2.3.8.2 Variables

blockCount
TYPE: 16-bit unsigned integer
This variable represents the number of either 65-bit blocks or 66-bit blocks.

CLK
TYPE: Boolean
This Boolean is true on every negative edge of TX_CLK (see 46.3.1) and represents instances
of time at which a 66-bit block is passed from the output of the 64B/66B encoder into the FEC
encoder. This variable is reset to false upon read.

dataPayload<FP-1:0>
TYPE: Bit array
This array represents the payload portion of the FEC codeword, accounting for the necessary
padding. It is initialized to the size of FP bits and filled with the binary value of “0”.

dataParity<FR-1+CP:0>
TYPE: Bit array
This array represents the parity portion of the FEC codeword, accounting for the necessary
padding. It is initialized to the size of FR + CP bits and filled with the binary value of “0”.

FIFO_FEC_TX
TYPE: Array of 65-bit blocks
A FIFO array used to store 65-bit blocks, inserted by the input process and retrieved by the
output process in the FEC encoder.

loc
TYPE: 16-bit unsigned integer
This variable represents the position within the given bit array.

SH_CTRL
See 76.3.2.5.2

SH_DATA
See 76.3.2.5.2

sizeFifo
TYPE: 16-bit unsigned integer
This variable represents the number of 65-bit blocks stored in the FIFO.

tx_coded<65:0>
TYPE: 66-bit block
This 66-bit block contains 64B/66B encoded data from the output of 64B/66B encoder. The
format for this data block is shown in Figure 49–7. The left-most bit in the figure is
tx_coded<0> and the right-most bit is tx_coded<65>.

tx_coded_out<64:0>
TYPE: 65-bit block

33

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

This 65-bit block contains the output of the FEC encoder being passed towards the Data Detec-
tor. The left-most bit is tx_coded_out<0> and the right-most bit is tx_coded_out<64>.

101.3.2.3.8.3 Functions

calculateCrc (ARRAY_IN)
This function calculates CRC40 for data included in ARRAY_IN.

calculateParity(ARRAY_IN)
This function calculates LDPC parity (for the code per Table 101–5 or Table 101–6) for data
included in ARRAY_IN.

resetArray(ARRAY_IN)
This function resets the content of ARRAY_IN, removing all the elements within ARRAY_IN
and setting its size to 0.

removeFifoHead(ARRAY_IN)
This function removes the first block in ARRAY_IN and decrements its size by 1.
removeFifoHead(ARRAY_IN)
{
ARRAY_IN[0] = ARRAY_IN[1]
ARRAY_IN[1] = ARRAY_IN[2]
...
ARRAY_IN[sizeFifo-2] = ARRAY_IN[sizeFifo-1]
sizeFifo --
}

101.3.2.3.8.4 Messages

TBD

101.3.2.3.8.5 State diagrams

The CLT PCS shall implement the LDPC encoding process, comprising the input process as shown in
Figure 101–2 and the output process as shown in Figure 101–3. The CNU PCS shall implement the LDPC
encoding process, comprising the input process as shown in Figure 101–2 and the output process as shown
in Figure 101–3.

In case of any discrepancy between state diagrams and the descriptive text, the state diagrams prevail.

34

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 101–2—FEC encoder, input process state diagram

BEGIN

WAIT_FOR_BLOCK

tx_coded<65:0> *
(tx_coded<1:0> = SH_DATA +
tx_coded<1:0> = SH_CTRL)

FIFO_FEC_TX[sizeFifo] tx_coded<65:1>
sizeFifo ++

AGGREGATE_BLOCK

UCT

sizeFifo  0

INIT

35

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 101–3—FEC encoder, output process state diagram (CLT)

BEGIN

loc 0
blockCount 0
resetArray(dataPayload)
resetArray(dataParity)

RESET

UCT

C
L
K

 *
 b

lo
c
k
C

o
u

n
t
<

 B
Q

CLK * blockCount = BQ

dataPayload<loc+39:loc> calculateCrc(dataPayload<loc-1:0>)
dataParity calculateParity(dataPayload)
tx_coded_out<39:0> dataPayload<loc+39:loc>
tx_coded_out<64:40> dataParity<24:0>
loc  25
blockCount  0

CALCULATE_CRC40_AND_PARITY

CLK

C
L

K
 *

 b
lo

c
k
C

o
u
n

t
<

 C
Q

CLK * blockCount = CQ

dataPayload<loc+64:loc> FIFO_FEC_TX[0]
tx_coded_out<64:0> FIFO_FEC_TX[0]
removeFifoHead(FIFO_FEC_TX)
loc += 65
blockCount ++

AGGREGATE_BQ_BLOCKS

INIT

CLK

tx_coded_out<64:0> dataParity<loc+64:loc>
loc += 65
blockCount ++

SEND_PARITY

36

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

