Bright House Networks, Hybrid Fiber Coax and EPON over Coax

IEEE 802.3 EPOC Study Group January, 2012

Edwin Mallette

Agenda

- Why EPoC ? And What "It" MUST Be
- Hybrid Fiber Coax Deployment at BHN
- Signal Amplification and Node+N
- BHN Spectral Allocation
- © Spectral Allocation Flexibility
- Residential / Commercial Service Coexistence
- Access Network Segment Bandwidth Growth

Why EPoC ? And What "it" MUST Be?

- Why EPoC?
 - Internal BHN studies indicate the construction cost to deploy EPoC on existing coax plant (at Node+0) is ~1/5th the construction cost to build FTTH.
 - These studies make assumptions based on "minimal" coaxial plant upgrades; amp upgrades/modifications is included in the "minimal" coaxial plant upgrades.
- What "it" MUST Be?
 - Much of the interest in EPoC stems from a theoretical ability to add EPoC into a system without a complete rebuild of the Coax system.
 - Thus EPoCs ability to operate through amps, utilize flexible spectral allocations, and support many concurrent services are all of paramount importance.

BHN Hybrid Fiber Coax 1/2

- BHN's existing hybrid fiber-coax (HFC) plant typically has some "node" fiber – commonly 6 fibers or less pulled to the HFC Node though in more recent builds this number is much higher.
- All the analog and digital 6MHz channels are transported over a single fiber to the node where the node converts the optical carriers back to RF carriers and transmits them on coaxial cable.
- The coax plant distribution to service a group of subscribers is often segmented in terms of a number of "legs" off of a given HFC node.
- > The number of legs is typically between two and four legs off of an HFC Node.

BHN Hybrid Fiber Coax 2/2

- > The diagram below depicts a single leg off of an HFC node.
- Trunk Cable extends from the HFC node and often has as many as four actives (amps, line extenders, etc)
- Feeder cable connects to Trunk Cable and has taps positioned along the feeder cable which service homes (via Drop Cable).
- > Typical feeder amplifiers support 16-32 homes via 2, 4, and 8-port taps.
- > Typical feeder cable has 3 or fewer actives from trunk cable to the end of the feeder cable.

BHN HFC and Amplification

- There are two profiles provided of BHN HFC plant deployments which cover a large number (80%+) of our deployments.
- > A big difference is the gain provided by amplifiers some actives have a higher output gain than others.
- BHN has some markets where earlier deployed, lower gain amps were implemented with lower output gain resulting in fewer homes passed per active.

Profile 1: Low Gain Amp				
Homes Passed per No	de 392			
Actives per Node	31			
Coax Miles per Node	4.6			
HP per Mile	85			
HP per Active	12.7			

Profile 2: High Gain Amp			
Homes Passed per Node	380		
Actives per Node	19		
Coax Miles per Node	4.4		
HP per Mile	89		
HP per Active	20		

NODE + N

EPoC PHY MUST operate through actives.
 Support of Node+3 is a MUST Requirement.
 Node +0 (passive) is an assumed requirement.

Node +3 (or better) is necessary to be cost effective early in the deployment cycle.

NOTE:

It is NOT a requirement that the performance in Node+3 deployment be equivalent to the performance in Node+0 deployment.

NODE +0

- While node+0 is an all-passive coax build, there are still questions regarding <u>in-house actives</u>.
- > A Node+0 build would look similar to the one below.
- Fiber is overbuilt on the trunk and feeder cables.
- EPoC would be inserted after every active in this case and would be filtered at the next active.
- For complete EPoC deployment this would require fiber overbuild of all trunk coax segments and nearly all feeder coax segments.
- The only segments not requiring an overbuild would be the drop cables.

NODE +3

- Node+3 might look a lot like Node+4 in cases where in-home actives are deployed.
- A Node+3 build look like the one diagramed below.
- Fiber is run along the trunk cable and inserted at or after the active onto the feeder cable.
- Fiber overbuild is only required over trunk segments.
- This aligns directly with BHN's new build HFC construction.

Spectral Allocations (1/2)

- At BHN different markets have different spectrum available for use without significant modification to the current production spectrum allocation.
- > In general, it is expected that (at least initially) any solution would have to coexist with the lineup of existing services.
- > While forward frequency amplification occurs beyond the product ratings, performance outside the rating varies greatly.

Profile 1: 750MHz Plant			Profile 2: 860MHz Plant			
Forward Channel Width	6MHz		Forward Channel Width	6MHz		
Existing Forward Amp.	54MHz - 750MHz		Existing Forward Amp	54MHz - 860MHz		
Return Channel Width	1.6MHz - 6MHz		Return Channel Width	1.6MHz - 6MHz		
Amplified Return	5MHz - 42MHz		Amplified Return	5MHz - 42MHz		
Spacing	22dBmV		Spacing	25dBmV		

Spectral Flexibility

- Option 1) <u>High-Split</u> both forward and return EPoC ranges are above the top used frequency range – 860MHz to ~1.2GHz.
- Option 2) <u>Mid-Split</u> increase low split >54MHz for return, as an example to 200MHz) and use the frequency range about 860MHz for forward. The return here may be contiguous or noncontiguous.

				Key Requirement:			
54MHz			Spectral Placement Flexibility				
				860	MHz 1.2	2GHz	
OPTION 1)			OPTION	N 1)			
Exist Retu	ting urn	Existing Forward			EPoC Forward and Return		
54MHz 860MHz 1.2GH					2GHz		
			OPTION	2)			-
Exis Ret	ting urn	EPoC Return		Existing Forward		EPoC Foward	

Service Profile

Residential / Business Service Coexistence a MUST:

- Residential and Business Services will exist on the same access network, and on the same EPOC network, scheduled by a common scheduler, just as they do today in our DOCSIS access.
- Residential and Business Services may also exist on separate access (optical / coax?) distribution networks.

Symmetric and Asymmetric Services are both a MUST:

- Residential services are largely expected to continue the asymmetric trend, though there is concern that the asymmetry for some services will become less pronounced due to emerging applications.
- BHN Business services are targeted to be symmetric; Business services provided by DOCSIS are asymmetric though this is often not ideal.
- > BHN Business services provided by EPON are universally symmetric.

EPOC and Services

- At BHN, HFC and EPON access technologies support various (and often non-overlapping) services.
- EPOC is envisioned to bring a common access technology for all services

<u>Services</u>	<u>HFC</u>	<u>EPON</u>	<u>EPOC</u>
Residential Phone Services	YES	NO*	YES
Commercial Phone Services	YES	YES	YES
Advanced Commercial Phone Services (Managed PBX, etc)	NO	YES	YES
Residential Video Services	YES	NO*	YES
Commercial Video Services	YES	YES	YES
Residential Internet Services	YES	NO*	YES
Commercial Internet Services	YES	YES	YES
Basic Commercial Data / VPN Services	YES	YES	YES
Advanced Commercial Data (MPLS L2VPN / MPLS L3VPN)	NO	YES	YES

* YES only in trial – high construction cost preclude widespread deployment.

Questions?

