

EPoC (Ethernet PON over Coax): <u>Architecture</u>, MPCP, and DBA

Biswanath Mukherjee, PhD

IEEE Fellow Distinguished Professor Department of Computer Science University of California, Davis

To be presented at IEEE 802 Plenary Session, March 2012

Outline

- Introduction
- EPoC Architecture
- Physical-Layer Overview
- MPCP and DBA Overview
- Ongoing Work

Introduction

- Next-generation access network technology
 - Passive Optical Networks
 - Fiber to the "x" technologies (FTTx)
- Better QoS with fiber closer to the user
 - FTTH (Home) is expensive
 - FTTB (Building) or FTTC (Curb) options attractive to operators

- Ethernet Passive Optical Network (EPON) over coax (EPoC)
- EPON connecting coaxial front end to backbone network
- Why EPoC?
 - Leverages existing cable TV infrastructure
 - Installed in millions of subscribers' homes
 - Provides high-bandwidth network access with multiple services
 - Facilitates migration to All-IP network

Our Lab's Research Objectives

- Many important issues need to be addressed for EPoC
 - Different modulation formats, line rates, line encoding, attenuation properties, etc.
 - MPCP, OAM, etc.

Our objectives:

- Develop an end-to-end solution architecture for EPoC
 - Timing and clock management
 - Channel and sub-carrier allocation
 - End-to-end scheduling protocol
 - Dynamic bandwidth allocation

EPoC Architecture (1)

Another possible name for CLT = Optical Coax Unit (OCU)

EPoC Architecture (2)

• Another option: CLT at head-end, co-located with OLT

Key Messages

- 1. To enable EPoC with EPON, MPCP is extended for coax domain but unchanged from an OLT perspective
 - 1.1 Traditional ONUs are supported in EPoC architecture without any change
 - 1.2 Coax part of EPoC is transparent to OLT and OLT does not differentiate between ONUs and CNUs
- 2. For coax integration with EPON, CLT converts communications from optical (time) to coax domain (time, sub-carrier) and vice-versa
 - 2.1 CLT operates coax PHY negotiation for CNUs, and performs upstream and downstream data transfer in coax domain
- 3. CNUs register with OLT directly similar to EPON autodiscovery and registration mechanism

Example EPoC Spectrum Provisioning

Illustrative example of spectrum provisioning

Source: Spectrum Proposal for EPoC: Dr. C. K. Sun, Peter Wolff, Titan Photonics, EPoC Study Group, Jan 2012

EPoC Characteristics

- Support compatibility with current deployments
 - Enabling EPoC on existing EPON
 - Adding traditional ONUs in EPoC architecture
- Multiple simultaneous upstream and downstream communication in coax domain
- Minimal extensions to MPCP between CLT and CNU
- CLT masks coax details from OLT

CLT

• Interface for optical-to-coax conversion

Tasks:

- Discovers CNUs and performs coax PHY negotiation
- Converts PHY data frames
- Performs downstream data transfer
- Performs upstream data transfer (as per gate window grant)

CLT acts as a multiplexer and media converter across optical and coax domains

Physical-Layer Overview – Frame Structure

- In PON segment of EPoC,
 - Data is transferred as Ethernet frames
 - Preamble is modified similar to 802.ah to include a unique Logical Link Identifier (LLID) assigned by OLT

Example Data Frame Conversion

• Statistical multiplexing of sub-carriers and timeslots

Note: Two-dimensional allocation of time and sub-carrier in coax domain to support multiple simultaneous CNU transmissions upstream and downstream

CNU Auto-Registration and Discovery

- CNU Customer premises equipment
 - Plug-and-play device
 - User turns it on/off based on usage
- CNUs cannot transmit until they have been allocated a timeslot and a sub-carrier
- CNU registers its services with OLT and OLT assigns LLID(s) to CNU services

CNU Auto-Discovery and Registration

CNU Registration

- Applicable to existing devices (OLTs) from vendors and PON deployments
- Compatible with IEEE 802.3 std.
- Combination of EPON auto discovery and Coax PHY parameter negotiation
- No new OLT protocols are needed

EPoC MPCP & DBA: Control-Plane Overview

- Upstream
 - CNUs send report message to OLT requesting upstream bandwidth
- Downstream
 - OLT assigns grant window to CNUs and sends gate messages
 - {start time, length}
 - CLT converts the grant window and assigns time slots and subcarrier
 - {time, sub-carrier}
 - CLT decides PRB size for CNUs
 - CLT broadcasts upstream and downstream control information as broadcast to all CNUs

EPoC MPCP & DBA: Data-Plane Overview

- Downstream
 - Ethernet frame fragmentation to fit PRBs
 - Ethernet frames recovered at CNU
- Upstream
 - CNU fragments Ethernet frames to fit PRBs allocated by CLT
 - Ethernet frames recovered at CLT and sent to OLT in grant window duration

EPoC MPCP & DBA: Control and Data Plane Overview

Key Messages

- 1. To enable EPoC with EPON, MPCP is extended for coax domain but unchanged from an OLT perspective
 - 1.1 Traditional ONUs are supported in EPoC architecture without any change
 - 1.2 Coax part of EPoC is transparent to OLT and OLT does not differentiate between ONUs and CNUs
- 2. For coax integration with EPON, CLT converts communications from optical (time) to coax domain (time, sub-carrier) and vice-versa
 - 2.1 CLT operates coax PHY negotiation for CNUs, and performs upstream and downstream data transfer in coax domain
- 3. CNUs register with OLT directly similar to EPON autodiscovery and registration mechanism

Ongoing Research in Our Lab

- An Integrated MPCP for DBA in EPoC (coax integration is transparent to OLT)
- Scheduling traffic in coax segment to facilitate different levels of QoS
- Mismatch in data rates in optical and coaxial segments of coax
 - Intelligent upstream and downstream bandwidth allocation
- OAM extensions
 - To support higher-layer functions