
Introduction to TDD Compared with FDD

Dave Barr, Entropic Communications Steve Shellhammer, Qualcomm Rajeev Jain, Qualcomm Juan Montojo, Qualcomm

Introduction: FDD vs. TDD

FDD = Frequency-Division Duplexing ۲

- Paired spectral allocations required: Split into two non-overlapping bands
 - HFC Split is typically rigidly fixed by stationary diplex filter transition band
- Upstream & Downstream traffic transmitted in dedicated freq. bands
 - typically simultaneously & independently (i.e., full-duplex)

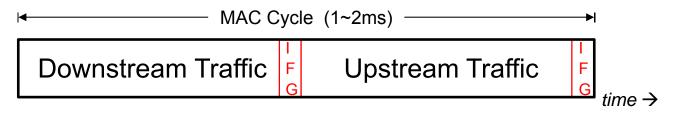
F

time \rightarrow

F

G

Benefits: FDD vs. TDD


- FDD easily traverses long HFC cascades (designed for the Node+Large era)
 - Easily conveyed over analog optics
 - Upstream from low-power CNUs can use the band with lowest attenuation
 - But every amplifier has two diplexors (difficult & expensive to change them)
- **TDD** offers more flexibility (better targets fiber deep & Node+small plants)
 - Single (unpaired) spectrum allocation
 - same benefits exploited by major new Access standards: TDD-LTE & WiMAX
 - Channel-width is doubled (given same total spectral allocation as FDD)
 - capability of bursting wider channel allocation in either direction
 - ingress interference easier to mitigate (more opportunities to bitload around it)
 - » Upstream & Downstream de-rated ~equally
 - Peak datarates are doubled (without split-allocation as in FDD)
 - by enabling the entire channel-width to be flexibly scheduled for US or DS
 - e.g., symmetric mix for Business Services; Residential more likely asymmetric
 - Software-level agility of up/downstream mix (from millisecond-to-millisecond)
 - » statistical multiplexing (*stat-mux*) at Layer 2

PHY-Layer Overhead: FDD vs. TDD

- **FDD** wastes a spectral guard band (consumed by diplex filter transition)
 - band-width is ~25% of the Split frequency
 - current HFC plants waste 42~54MHz (25%×48MHz = 12MHz wasted)
 - if the split were moved to 300MHz, wasted band-width would be \sim 75MHz

- **TDD** wastes two IFGs per MAC Cycle (IFG = Inter-Frame Gap)
 - time delay for nodes to switch between: Talk \rightarrow Listen \rightarrow Talk modes
 - i.e., transceiver turnaround time: Downstream→Upstream→Downstream
 - Overhead = (IFG+IFG)÷(MAC Cycle duration) \approx (7µs + 7µs)÷1ms \approx 2%

Scheduling Efficiency: FDD vs. TDD

- Overhead
 - FDD is continuous downstream, bursted upstream
 - each burst requires a preamble
 - TDD is bursted downstream, bursted upstream
 - difference is two IFGs, plus one downstream preamble
 - ~2% difference in channel-time overhead
 - » cf., FDD's ~25% spectral guard band overhead
- Latency
 - FDD supports efficient continuous downstream
 - but only ~half the peak capacity of TDD
 - hence, more likely to become congested (no statmux with upstream capacity)
 - TDD has non-continuous downstream
 - $-\frac{1}{2}$ MAC cycle waiting time (on average) for channel to become available

Summary: FDD vs. TDD

- FDD supports long HFC cascades
 - FDD was appropriate for the Node+Large era
 - works well, until you occupy to capacity
 - But requires paired spectral allocations
 - with typically rigid inflexible diplex filters locking MSOs into 'crystal ball' Split
 - Peak datarates are ~half that of TDD
 - e.g., given symmetric spectral allocations
 - FDD overhead consumes ~25% of spectrum at the Split frequency
- **TDD** offers flexible allocation of double the peak datarate
 - i.e., capable of bursting the entire spectral allocation in either direction
 - with single spectrum allocation (does not require paired spectrum)
 - TDD overhead consumes ~2% of channel-time
 - e.g., switching-time between upstream & downstream traffic
 - Flexible Up/Downstream capacities (statmux agility, from msec-to-msec)
 - Symmetric Business Services; Asymmetric for Residential