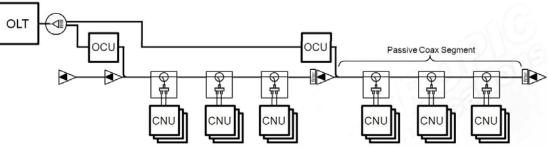

Passive Coax Media

PHY-layer Tradeoffs vs. Active HFC Media


Dave Barr, Entropic Communications Steve Shellhammer, Qualcomm Rajeev Jain, Qualcomm Juan Montojo, Qualcomm Jorge Salinger, Comcast

Passive Coax Media vs. Active

- Passive Coax has different channel models than Active HFC's FDD bands
 - passive coax plants (e.g., Node+0 or MDUs)
 - can use spectrum above CATV band

- passive coax segments between amplifiers on active HFC networks
 - can use and *reuse* spectrum above FDD allocations

- channel models for passive coax are symmetric
 - whereas upstream & downstream models are different within HFC's FDD bands
- High-RF upstream channel is very different from that of FDD's Low-RF
 - opposite ends of the spectrum (e.g., >750MHz vs. <54MHz)
 - significantly affects optimal PHY-layer design...

PHY for Passive Coax vs. Active

- Both passive coax media can use high-RF spectrum
 - i.e., relatively wider, contiguous, unused spectral allocations
 - occupation of spectrum outside FDD bands (e.g., near tap rolloff)
 - less need for scatter/gather type channelization in freq. domain
 - reduced adjacency to legacy \rightarrow less need for scatter/gather type modulation
 - well-suited for OFDM efficiencies
 - highly scaleable to wide channels: computational complexity scales $\sim N \times \log_2 N$
 - frequency-domain equalization, bitloading, interference mitigation, OFDMA,...
 - High-RF has little/no burst impulse noise (unlike FDD's upstream band)
 - reduced/no need for interleaving; helps enable shorter symbols
 - High-RF has higher attenuation per unit length
 - → higher pathloss to/from CNUs: argues for OFDMA for greater reach/SNR
 - → greater disparity among pathlosses to/from CNUs
 - argues for CNU-specific bitloading
 - \rightarrow reduced micro-reflection multipath
 - argues for shorter symbol duration
 - » better payload packing efficiency; finer scheduling granularity
 - » fewer simultaneous OFDMA transmitters
 - » shorter allocation cycles; lower latency

Summary: PHY for Passive Coax

- A TDD mode for EPoC can operate on Passive Coax media
 - e.g., use of spectrum outside FDD bands
- Passive Coax has different channel models than Active HFC's FDD bands
 - e.g., broader allocations outside FDD bands (High-RF)
 - significantly affects optimal PHY-layer design
- Objectives need to keep open the possibilities
 - a TDD Mode on Passive Coax
 - PHY optimizations for different media: Passive Coax and Active HFC