100GE WDM Grid Observations

IEEE 802.3 Higher Speed Study Group Fiber Optic Ad Hoc 4 April 2007 Chris Cole

Outline

- Proposed Simplifications to 100GE Alternatives Table Entries
- Existing WDM Grid Alternatives
- Possible New WDM Grid Alternative

Finisar

2

Reach (Technical) Feasibility of 100GE Alternatives

SMF	10km	40km	10km	40km
	1310nm	1310nm	1550nm	1550nm
10x10G	yes	yes	yes	maybe
DML		+ OA		+ OA
10x10G	yes	yes	yes	yes
ML	\	+ OA		+ OA
5x20G / 4x25G	yes	yes	maybe	maybe
DML		+ OA		+ DC
5x20G / 4x25G	yes	yes	yes	yes
ML		+ OA		+ DC
2x50G DQPSK	yes	yes	yes	yes
I/Q ML		+ OA + DC	+ DC	+ DC
1x100G TDM	yes	yes	yes	yes
ML	+ OA	+ OA + DC	+ OA + DC	+ OA + DC

OA = Optical Amplification, DC = Dispersion Compensation

Green shading designates alternatives under detailed study by Fiber Optic Ad Hoc contributors

4 April 2007 3

Existing WDM Grid Alternatives

- IEEE 802.3 LX-4 grid
 - ~ 1275- 1350nm span (O band) with 4 channels
 - 25nm spacing
 - 13.4nm width
- ITU G.694.2 CWDM grid
 - ~ 1470 1610nm span (O, E, S, C, L band) with 18 channels
 - 20nm spacing
 - 13nm width
- ITU G.694.1 DWDM grid
 - ~ 1492 1612nm span (S, C, L band) from 193.1THz base
 - 200, 100, 50, 25, 12.5GHz spacing alternatives
 - Application dependent width

Finisar

4

Observations on Existing WDM grids

- CWDM (or LX4)
 - Uses un-cooled lasers
 - For 2.5G applications this was estimated to result in ~40% cost savings versus cooled lasers.
 - 4 or 5 channel applications span 60nm to 80nm
 - Monolithic laser arrays require complex fabrication processing steps.

DWDM

- Uses cooled lasers
- Transport applications have stringent specifications (ex. frequency stability, four wave mixing effect, etc,) which increase cost.

5

Finisar

4 April 2007

Possible New WDM grid alternative

- IWDM or iWDM (Intermediate WDM)*
 - 400GHz to 800GHz spacing
 - ~2nm to 4nm spacing in the 1310nm band
 - ~10nm span supported by standard monolithic laser array processing
 - Does not impose stringent frequency stability requirements
 - Avoids most non-linear DWDM effects
 - Requires cooling or semi-cooling
 - Feasible WDM Mux and DeMux structures
- It is recommended that HSSG FOAC contributors study non-standard WDM grid alternatives to recommend an optimum grid for the 100GE application.
- * ITU defines a grid as CWDM if it is between 1000GHz to 50nm, and as DWDM if it is under 1000GHz, so strictly speaking the above grid is DWDM. However, a distinct name, such as iWDM, may a better differentiator.

Finisar

6