Alternatives for 100GE

Presented by Robert L. Hartman, Ph.D. CyOptics VP Device Development

to the IEEE 802.3 High Speed Study Group's Interim Session

January 17, 2007

100GE Cost, Schedule & Technical Feasibility

- Cost:
 - Package bodies, TEC's, isolators, receptacles, are expensive parts of TOSA or ROSA
 - Un-cooled optical multiplexing (mux and de-mux) will be the lowest cost solution for many applications
 - O or E dispersion compensation will be costly and should be avoided
 - The cost of ICs (TIAs, CDRs & Drivers) and the EC are estimated separately
- Schedule:
 - Product needed in near future considering the usual development times
 - ICs for ~20 Gbps will be available and cost effective (most likely)
 - Hybrid PICs (m-optic & Si multiplexers) available before monolithic InP PICs

CYOPTI

- Baud >> ~20 Gbps will require traveling wave components and not be practical & meet schedule
- Spans to be considered < 40km, SM or MM fiber
 - Single mode sources with optical isolation can work with MM fiber
 - PIC solutions can be cost effective in the <1km market

100GE

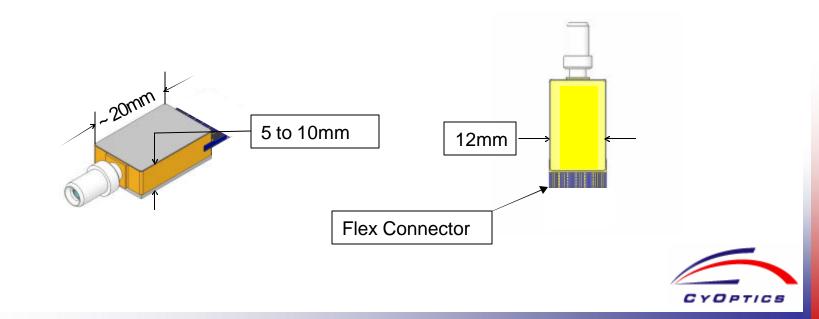
- Performance Goals:
 - Extrapolating from existing standards for span loss, there appears to be 3 applications: <40km, <10km, and <1km with span loss at 1.3um of 22dB (11dB @1.5um); 9.4dB; and most likely <5.8dB.
 - Ambient temperature is most likely going to be -5C to 85C.
 - The transmission could be CWDM or DWDM (TDM too costly)
 - {There is one special market supercomputers where the ambient temperature range is ~30C and the span link is <100m point to point with span loss ~1 to 2 dB.}
- Optical Solutions:
 - All above spans can be addressed economically with a 1.3um PIC source (low chromatic dispersion penalty) & 40km could be a PIC 10 x 1.5um solution.
 - Generalizing the optical mux, de-mux insertion loss (IL), one finds for each micro-optical an IL of 3dB or less, for Si waveguides ~6.5dB (TOSA) and ~5dB ROSA and for each monolithic AWG in InP ~6dB. Coupling loss to u-optical TOSA of 2dB must also be added.

• Optical solutions then implies the following loss:

		Span Loss+IL in dB			
Span Length	Source	u-optical	Silicon	InP AWG	
40 km	1.5um	17	22.5	23	
40 km	1.3um	28	33.5	34	
10km	1.3um	15.4	20.9	21.4	
1km	1.3um	11.8	17.3	17.8	
0.1km	1.3um	8	13.5	14	

• While ROSA have the following sensitivities (SOA at the input can improve these values):

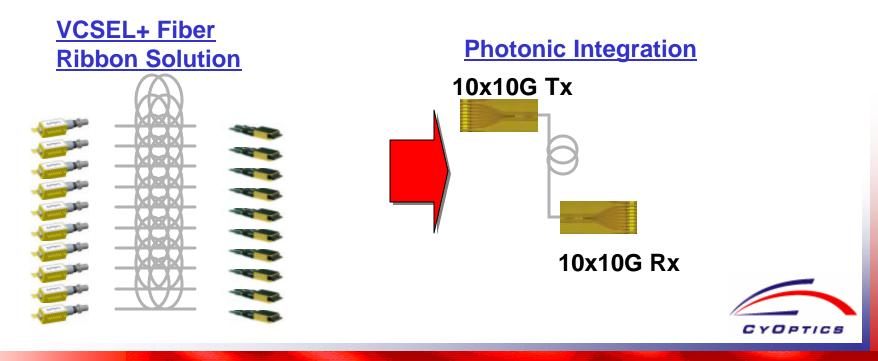
Detector	PIN/DFB	PIN/EML	APD/DFB	APD/EML
10 Gbps	-17	-19	-25	-27
20 Gbps	-14	-16	not available now*	


* APDs at 20 Gbps require traveling wave designs

Suggested Package Configuration

Assumptions

- TOSA and ROSA should be in small, practical, hermetic packages
- 12mm width allows Xenpak footprint and can accommodate 5 channels
- For practical flex connection to package recommend contact & space
 <u>></u> 0.2mm. This allows up to ~28 contacts on back edge to child board.
- ~28 contacts allows external drivers & single-ended connection to TOSA
- ~28 contacts allow TIAs to be inside ROSA package with differential leads.


Cost of Optical Solutions - 100GE

Link	TOSA	ROSA	When	Est. Vol. Costs (ICs & EC excluded)
<u><</u> 1km	1.3um 10Ch 10Gb 1dBm	PIN w PLC	То	Unit <\$0.86X
5.8dB	1.3um 5Ch 20Gb 4dBm	PIN w AWG or PLC	To+1yr	Unit <\$X/2
10km	1.3um 10Ch 11Gb 6dBm	PIN w PLC	То	Unit <\$0.93X
9.4dB	1.3um 5Ch 22Gb 8dBm	PIN w AWG or PLC	To+1yr	Unit <\$0.57X
40km	1.5um 10 Ch 11Gb 4dBm	PIN w PLC	То	Unit <\$X
22dB	1.3um 5 Ch 22Gb 3dBm	PIN SOA AWG PLC	To+1yr	Unit <\$2X/3

- Link loss will be similar to existing standards
- PLC will be used for multiplexing and may be lower cost than uoptic. An issue is the process yield on the PLC. Low favors PIC, high favors PLC
- DFB extinction is ~ 6dB while EML extinction ~ 9dB
- Cost of ICs at ~20Gbps will be comparable to ICs at ~10Gbps by To + 1yr. The ICs and the EC can add up to \$0.1X to above costs://

Recommendation for Spans <1km

- Cost for very short reach spans can compete with VCSEL solutions, especially when the fiber ribbon is included in the cost.
- Edge emitting reliability is well documented (CyOptics alone has reported >120 billion device hours with >4 million lasers in the Telecom field).
- We strongly recommend that it is technically feasible to include edgeemitting PICs for these short spans, not just for 10km (or 40km).

