SAN and NAS Bandwidth Requirements

Exploring Networked Storage

Scott Kipp
Office of the CTO
Brocade Inc.

July 2007
Categorizing Storage - DAS – SAN - NAS

Directly Attached Storage – DAS – Storage that is connected point-to-point with a server
 – Originally on the SCSI Bus but also serial attached devices

Storage Area Network – A network that enables block level (raw) storage to be accessed from multiple servers
 – Mainly based on Fibre Channel but iSCSI has about 5% revenue

Networked Attached Storage – Shared files (cooked storage) that are accessed over the LAN
 – Originally a server that delivers shared files
 – ~25% of the revenue of External Storage

Over $13B spent on external storage in 2006 to surpass internal for the first time.
Fibre Channel Replaces the SCSI Bus

SCSI Bus lead to captive storage with only 1 server (initiator) per bus

Fibre Channel liberated storage so that multiple servers could access it at the same time

Fibre Channel extended the distance and increased the speed of Storage I/O to Gigabit per second speeds (Gbps)

Internet SCSI (iSCSI) has mapped the SCSI protocol on top of Transmission Control Protocol (TCP/IP)

Fibre Channel Over Ethernet (FCoE) is being designed to encapsulate FC frames and transfer them over Ethernet networks
High Level Overview

File Based Data

Users

Remote Connections

LAN Ethernet

Traditional Block Data

Servers

Storage

SAN Fibre Channel

High Level Overview
Fibre Channel Roadmap

<table>
<thead>
<tr>
<th>Product Naming</th>
<th>Throughput (MBps)</th>
<th>Line Rate (GBaud)†</th>
<th>T11 Spec Technically Completed (Year)‡</th>
<th>Market Availability (Year)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>1GFC</td>
<td>200</td>
<td>1.0625</td>
<td>1996</td>
<td>1997</td>
</tr>
<tr>
<td>2GFC</td>
<td>400</td>
<td>2.125</td>
<td>2000</td>
<td>2001</td>
</tr>
<tr>
<td>4GFC</td>
<td>800</td>
<td>4.25</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>8GFC</td>
<td>1600</td>
<td>8.5</td>
<td>2007</td>
<td>2008</td>
</tr>
<tr>
<td>16GFC</td>
<td>3200</td>
<td>17</td>
<td>2009</td>
<td>2011</td>
</tr>
<tr>
<td>32GFC</td>
<td>6400</td>
<td>34</td>
<td>2012</td>
<td>Market Demand</td>
</tr>
<tr>
<td>64GFC</td>
<td>12800</td>
<td>68</td>
<td>2016</td>
<td>Market Demand</td>
</tr>
<tr>
<td>128GFC</td>
<td>25600</td>
<td>136</td>
<td>2020</td>
<td>Market Demand</td>
</tr>
</tbody>
</table>

Base2

- 99% of volume with all End Devices

Base10

- Only Inter-Switch Links

<table>
<thead>
<tr>
<th>Product Naming</th>
<th>Throughput (MBps)</th>
<th>Line Rate (GBaud)†</th>
<th>T11 Spec Technically Completed (Year)‡</th>
<th>Market Availability (Year)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>10GFC</td>
<td>2400</td>
<td>10.52</td>
<td>2003</td>
<td>2004</td>
</tr>
<tr>
<td>20GFC</td>
<td>4800</td>
<td>21.04</td>
<td>2008</td>
<td>2008</td>
</tr>
<tr>
<td>40GFC</td>
<td>9600</td>
<td>42.08</td>
<td>TBD</td>
<td>Market Demand</td>
</tr>
<tr>
<td>80GFC</td>
<td>19200</td>
<td>84.16</td>
<td>TBD</td>
<td>Market Demand</td>
</tr>
<tr>
<td>160GFC</td>
<td>38400</td>
<td>168.32</td>
<td>TBD</td>
<td>Market Demand</td>
</tr>
</tbody>
</table>
SAN Generations

<table>
<thead>
<tr>
<th>SAN Generation</th>
<th>Release Date</th>
<th># of FC Ports in a Corporate SAN</th>
<th>New Speeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>1998</td>
<td>10s</td>
<td>1GFC</td>
</tr>
<tr>
<td>2nd</td>
<td>2002</td>
<td>100s</td>
<td>2GFC</td>
</tr>
<tr>
<td>3rd</td>
<td>2005</td>
<td>1,000s</td>
<td>4/10GFC, GE</td>
</tr>
<tr>
<td>4th</td>
<td>2008</td>
<td>10,000s with some NPIV</td>
<td>8/10GFC, 10GE</td>
</tr>
<tr>
<td>5th</td>
<td>2011</td>
<td>100,000s with NPIV</td>
<td>16/20GFC</td>
</tr>
</tbody>
</table>

NPIV = N_Port_ID Virtualization is a technique to acquire multiple N_Port_IDS or Fibre Channel Addresses for Virtual Servers
GFC = Gigabit/second Fibre Channel, GE = Gigabit Ethernet
Volume to Mid-Range Storage

Volume Storage Arrays contain 10s of disks for a few Terabytes of capacity
• 2 to 8 2GFC Links/ storage Array
 – 2-10+ Gbps of throughput

Midrange Storage Arrays contains 100s of disks for 10s of Terabytes of capacity
• 4 to 24 2/4GFC Links/ storage Array
 – 10s of Gbps of throughput

GFC = Gigabit/second Fibre Channel
High End Storage

Over 1,000 disk drives for 100s of TBs in a storage subsystem
• 64+ lanes of 2-4GFC
 – exceeding 100 Gbps of throughput
Server Types

IDC reported 7.5 million servers shipped in 2006 and breaks out three types of servers:

• Volume Servers (<$25k and 97.5% of volume)
 – Mostly use Directly Attached Storage
 – Blade servers are fastest growing segment with a 60% SAN attach rate
 • Each blade is counted as a server
 • Blade servers use more virtualization and multi-core processes to drive I/O

• Midrange Enterprise Servers ($25k to < $500k and 2.4% of volume)
 – Largely SAN attached

• High-End Enterprise Servers ($500k or more and 0.1% of volume)
 – Mostly SAN attached
 – Mainframes and UNIX
Current Blade Server Architecture

Each Blade Server has an FC lane to an embedded FC Switch
- Usually 10-16 server blades with 4GFC connections to switch
 - Up to 64 Gbps of throughput from servers
- 4-8 external 4GFC ports for up to 32Gbps of throughput / switch
Each Blade Server has multiple virtual machines (VMs) running different applications that increase the utilization of the server and drive bandwidth.

Think Grid or adaptive computing.
Midrange and High End Servers

Midrange Servers have a few processors with a few cores to a couple dozen processors

• A few FC Host Bus Adapters (HBAs) with 4-25 physical ports running at 4GFC
 – 10s of Gbps* to storage

High End Servers (mainly mainframes and UNIX) have tens of processors

• Hundreds of FC ports at 4GFC
 – 100s of Gbps* to storage

*These bandwidths are current architectural limits and not the bandwidth that is being driven through the servers.
Fibre Channel Switches and Directors

10s to 100s of 4GFC Ports
• Soon will support 8GFC
• Already supports 10GFC for Inter-Switch Links
• Supports Ethernet ports for iSCSI servers and Fibre Channel over Internet Protocol (FCIP)
• Supports distance extension over SONET/ATM/GFP/PW

Architectural Details

GFC = Gigabit Fibre Channel, GFP = Generic Framing Protocol, PW = Pseudo Wire
Trunking of InterSwitch Links

8 lanes of 4GFC are trunked to effectively create a 32GFC link.
Network Attached Storage (NAS)

NAS is storage on the LAN that share files (file level storage) while SANs share Block level storage behind servers

• NAS products host shared drives (think m: or v: drives)
• End users quickly began storing and sharing large amounts of computer files
• Unstructured file (end user) data is the fastest growing data type – think powerpoint, excel, photos and MP3s

Large NAS heads or filers have Ethernet front ports and Fibre Channel back ports
NAS Products

NAS file-based products follow the same progression of SAN's block-based storage products

Volume systems may have a few TeraBytes of Directly Attached Storage with a few Gigabit Ethernet front end ports

High end systems hold hundreds or TBs of SAN attached storage and tens of FC and GE ports and even 10GE ports
High Level Overview with NAS

File Based Data

Users

Servers

NAS Filer

Traditional Block Data

SAN Fibre Channel

LAN

Storage
Data Convergence

Data Centers of the future will merge multiple protocols (FC, Ethernet, FCoE) and technologies.
Conclusion

SANs are the basis for storage and server consolidation that drives 10s to 100s of Gbps of throughput.

NAS is an application that consumes a large amount of storage and serves a large amount of files in the few to tens of Gbps range.

Virtualization of Servers, switches and storage increases utilization of physical assets and bandwidth in the SAN space.

Corporate networks are converging with Fibre Channel over Ethernet (FCoE) being defined as the latest “Unified Wire” protocol in T11 and IEEE.
Backup Slides
SANs May be a Collection of Fabrics

Corporations may have multiple Fibre Channel Fabrics and use new virtualization techniques.
Server and storage Independence

Many servers can access networked storage

One server can access many types of shared storage

Typically there are 4-8 server ports for every storage port