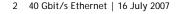
How can 40 Gb Ethernet be designed to fit existing ODU3 transport?


IEEE HSSG Meeting, San Francisco – July 16-19, 2007

Stephen J. Trowbridge Chief Technology Office - Optics Division *Alcatel-Lucent*

1 40 Gbit/s Ethernet |16 July 2007

Supporters

- Pete Anslow (Nortel Networks)
- Thomas Fischer (Nokia Siemens Networks)
- Ted Woodward (Telcordia)
- Matt Traverso (Optnext)
- Yann Loussouarn (France Telecom Orange)
- Ralf-Peter Braun (Deutsche Telekom T-Systems)
- Ghani Abbas (Ericsson)
- Med Belhadj (Cortina Systems)
- Frank Chang (Vitesse)
- Martin Carroll (Verizon)
- Keith Conroy (AMCC)

How can an encoded line rate of 40.149716 Gbit/s or less be achieved for 40 Gb Ethernet?

An encoded line rate of 40.149716 Gbit/s or less is needed to allow bit transparent transport via standard OPU3 (see duelk_01_0707.pdf)

Alternatives to be considered:

- Option 1: Reduce the MAC/PLS rate to 38.9 Gbit/s (or a round number like 38 Gbit/s) and continue to use 64B/66B coding
- Option 2: Keep the MAC/PLS rate at 40G and develop a more economical PCS line code that requires less than 0.36425% of overhead
- Option 3: Use a combination of a lower MAC/PLS rate and a more economical PCS line code so that the encoded line rate is less than 40.149716 Gbit/s
- Option 4: Packet level encoding don't put all of the preamble or IFG in the encoded signal to try to reduce the encoded line rate to less than 40.149716 Gbit/s

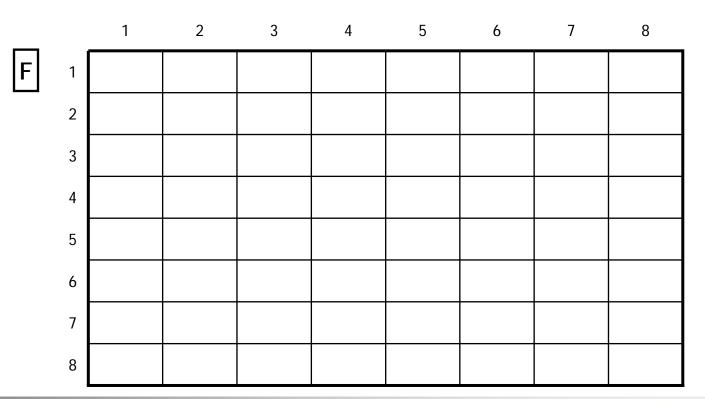
Option 1: Lower MAC/PLS Rate of 38.9 Gb/s

OPU3 payload rate	40.150 519 322 Gbit/s ±20ppm
-20ppm	40.149 716 312 Gbit/s
MAC Rate	38.9 Gbit/s ±100ppm
+100ppm	38.903 890 Gbit/s
With 64B/66B Coding	40.119 636 563 Gbit/s

Option 2: Could a more economical linecode be developed with <=0.36425% overhead?

Input Data	S y n c	Block	Payload								
Bit Position: Data Block Format:	01	2									65
$D_0 D_1 D_2 D_3 / D_4 D_5 D_6 D_7$	01	D ₀	D ₁	D ₂	D ₃		D	4	D_5	D ₆	D ₇
Control Block Formats:		Block Type Field		1			1			I	
$C_0 C_1 C_2 C_3 / C_4 C_5 C_6 C_7$	10	0x1e	C ₀	C ₁	C ₂	С	3	C ₄	C ₅	C ₆	C ₇
C ₀ C ₁ C ₂ C ₃ /O ₄ D ₅ D ₆ D ₇	10	0x2d	C ₀	C ₁	C ₂	С	3	O ₄	D ₅	D ₆	D ₇
C ₀ C ₁ C ₂ C ₃ /S ₄ D ₅ D ₆ D ₇	10	0x33	C ₀	C ₁	C ₂	С	3		D_5	D ₆	D ₇
$O_0 D_1 D_2 D_3 / S_4 D_5 D_6 D_7$	10	0x66	D ₁	D ₂	D ₃		O ₀		D_5	D ₆	D ₇
O ₀ D ₁ D ₂ D ₃ /O ₄ D ₅ D ₆ D ₇	10	0x55	D ₁	D ₂	D ₃		O ₀	0 ₄	D_5	D ₆	D ₇
$S_0 D_1 D_2 D_3 / D_4 D_5 D_6 D_7$	10	0x78	D ₁	D ₂	D ₃		D	4	D_5	D ₆	D ₇
$O_0 D_1 D_2 D_3 / C_4 C_5 C_6 C_7$	10	0x4b	D ₁	D ₂	D ₃		O ₀	C ₄	C ₅	C ₆	C ₇
$T_0 C_1 C_2 C_3 / C_4 C_5 C_6 C_7$	10	0x87		C ₁	C ₂	C	3	C ₄	C ₅	C ₆	C ₇
D ₀ T ₁ C ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	10	0x99	D ₀		C ₂	C	3	C ₄	C ₅	C ₆	C ₇
$D_0 D_1 T_2 C_3 / C_4 C_5 C_6 C_7$	10	0xaa	D ₀	D ₁		С	3	C ₄	C ₅	C ₆	C ₇
D ₀ D ₁ D ₂ T ₃ /C ₄ C ₅ C ₆ C ₇	10	0xb4	D ₀	D ₁	D ₂			C ₄	C ₅	C ₆	C ₇
$D_0 D_1 D_2 D_3 / T_4 C_5 C_6 C_7$	10	0xcc	D ₀	D ₁	D ₂		D	3	C ₅	C ₆	C ₇
$D_0 D_1 D_2 D_3 / D_4 T_5 C_6 C_7$	10	0xd2	D ₀	D ₁	D ₂		D	3	D ₄	C ₆	C ₇
$D_0 D_1 D_2 D_3 / D_4 D_5 T_6 C_7$	10	0xe1	D ₀	D ₁	D ₂		D	3	D ₄	D ₅	C ₇
D ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ D ₆ T ₇	10	0xff	D ₀	D ₁	D ₂		D	3	D ₄	D ₅	D ₆

Figure 49–7–64B/66B block formats

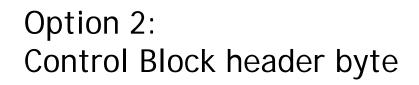

Current 64B/66B coding used in 10GBase-R (IEEE 802.3-2005, Clause 49)

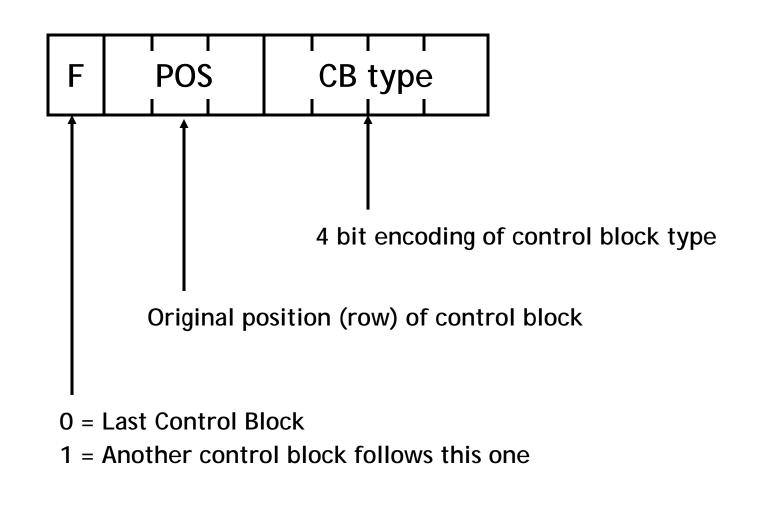
5 40 Gbit/s Ethernet | 16 July 2007

Option 2: Possible 512-bit/513-bit coding Reuse concept of 64-bit/65-bit coding of GFP-T

8 x 8 octet frame with one "Flag" bit indicating the presence of control blocks

6 40 Gbit/s Ethernet | 16 July 2007


Alcatel·Lucent 🅢


Option 2: 4 bit encoding of 64B/66B control block type

Туре	4 bit code
0x1e	0001
0x2d	0010
0x33	0011
0x66	0100
0x55	0101
0x78	0110
0x4b	0111
0x87	1000

Туре	4 bit code
0x99	1001
0xaa	1010
0xb4	1011
Охсс	1100
0xd2	1101
0xe1	1110
0xff	1111

Option 2: Example - All data blocks

	1	2	3	4	5	6	7	8
1	D	D	D	D	D	D	D	D
2	D	D	D	D	D	D	D	D
3	D	D	D	D	D	D	D	D
4	D	D	D	D	D	D	D	D
5	D	D	D	D	D	D	D	D
6	D	D	D	D	D	D	D	D
7	D	D	D	D	D	D	D	D
8	D	D	D	D	D	D	D	D

9 40 Gbit/s Ethernet | 16 July 2007

0

Option 2: Example – One control block, Seven all-data blocks

aaa = original row of control block cccc = 4 bit encoding of control block type X X X X X X = per format of 64B/66B control block type 5 6 7 8 2 3 4 1 0aaacccc Х Х Х Х Х Х Х 1 1 D D D D D D D 2 D D 3 D D D D D D D D D D D D D D D 4 D D D D D D D D 5 D D D D D D D D 6 7 D D D D D D D D D D D D D D 8 D D

10 40 Gbit/s Ethernet | 16 July 2007

Option 2: Example – Three control blocks, Five all-data blocks

aaa, bbb, ddd = original rows of control blocks cccc = 4 bit encodings of control block types

X X X X X X X = per format of 64B/66B control block types

	1	2	3	4	5	6	7	8
1	1aaacccc	Х	Х	Х	Х	Х	Х	Х
2	1bbbcccc	Х	Х	Х	Х	Х	Х	Х
3	Odddcccc	Х	Х	Х	Х	Х	Х	Х
4	D	D	D	D	D	D	D	D
5	D	D	D	D	D	D	D	D
6	D	D	D	D	D	D	D	D
7	D	D	D	D	D	D	D	D
8	D	D	D	D	D	D	D	D

1

11 40 Gbit/s Ethernet | 16 July 2007

Option 2: Economical Linecode – Finishing touches

- The 512-bit/513-bit coding uses 0.1953125% of the allowable 0.36425% overhead
- Combine 8 (or 8n) 513-bit blocks into a 513 (or 513n) byte super-block to have an integral number of bytes
- Scrambling to ensure sufficient transitions and timing recovery
- Some sort of framing (perhaps at the super-block level) to recover the start of frame

Option 3: Combination of lower MAC/PLS rate & more economical PCS

PCS-encoded line rate <40.149716 Gb/s EXAMPLE:

Possible MAC/PLS rate	39.5 Gbit/s				
+100 ppm	39.50395 Gbit/s				
With 64B/ <u>65B</u> coding	40.121199				
Other tradeoffs between MAC/PLS rate and coding are possible					

Option 4: Saving bits by not preserving preamble or IFG in PCS

Average MAC SDU size	Bitrate without preamble and IFG	With 64B/66B PCS
46 bytes (minimum)	30.476 Gb/s	31.428 Gb/s
100 bytes	34.203 Gb/s	35.272 Gb/s
500 bytes	38.513 Gb/s	39.716 Gb/s
1500 bytes (maximum basic)	39.479 Gb/s	40.714 Gb/s
2000 bytes (802.3as encapsulation)	39.607 Gb/s	40.845 Gb/s
9600 bytes (typical jumbo)	39.917 Gb/s	41.164 Gb/s
19900 bytes (maximum jumbo)	39.960 Gb/s	41.209 Gb/s

Not possible to fit within 40.149716 Gb/s payload of ODU3 by only eliminating preamble and IFG

Conclusions

- Specification of ~40Gb/s Ethernet compatible with existing OTN transport by selecting a MAC rate of 38.9 Gbit/s or less is feasible
- Specification of 40 Gb/s Ethernet compatible with existing OTN transport by specifying a linecode that requires less than 0.36425% of overhead is feasible
- Compatibility with existing OTN transport cannot be achieved with a MAC rate of 40.000 Gbit/s and 64B/66B coding by dropping ONLY preamble and IFG, but this COULD be considered in combination with other approaches to achieve the necessary fit.
- The objective proposed in Geneva has a good wording, as it permits choosing a solution from among all of the feasible approaches:

Support a speed of ~40 Gb/s at the MAC/PLS service interface while ensuring compatibility with OTN infrastructure

