100G versus ‘40G and 100G’
or
Single Rate versus Dual Rate

Gary Nicholl – Cisco
IEEE 802.3 Higher Speed Study Group
Supporters

• Andy Moorwood – Extreme Networks
• John Jaeger – Infinera
• Drew Perkins – Infinera
• Thomas Fischer – Nokia Siemens Networks
• Henk Steenman – AMS IX
• Alan Judge – Amazon
• Troy Sprenger – EDS
• Jay Moran – AOL
• Mark Nowell – Cisco
• Donn Lee – Google
• Ted Seely – Sprint
• Bill Trubey - Time Warner Cable
• Mark Kortekaas - CBS Interactive
• Mike Bennett – LBNL
• Joe Lawrence – Level 3

• Vik Saxena – Comcast
• Greg Hankins – Force10 Networks
• Peter Schoenmaker, NTT America
• Adam Bechtel – Yahoo
• Frank Chang – Vitesse
• Dan Dove – ProCurve Networking by HP
• Bill Woodruff – Aquantia
• Med Belhadj – Cortina
• Brad Booth – AMCC
• Wenbin Jiang – JDSU
• Bill Ryan – Foundry Networks
• Shashi Patel – Foundry Networks
• Michael Krause – HP ESS
Presentation Motivation

• There has been a lot of discussion within the HSSG on the subject of 40G and 100G
• There appears to be general consensus that a 100G rate is definitely required, so the debate is really around whether 40G should be included in addition to 100G
• The decision boils down to does the group want to move forward with a Single rate (100G only) or a Dual rate (100G and 40G) solution.
• This presentation reviews the implications of moving forward with a Dual Rate approach
Outline

• HSSG Objectives Recap
• 40G and 100G Applications Recap
• Single or Dual Rate Path
• Dual Rate approach
 • Advantages and Disadvantages
 • Standard’s impact
 • Industry impact
 • Historical Perspective
• Summary and Recommendations
HSSG Objectives Recap

• Nine objectives have been adopted by the Study Group:
 • Support full-duplex operation only
 • Preserve the 802.3/Ethernet frame format at the MAC Client service interface
 • Preserve min and max FrameSize of current 802.3 Std
 • Support a BER better than or equal to 10-12 at the MAC/PLS service interface.
 • Support a speed of 100 Gb/s at the MAC/PLS service interface
 • Support at least 100 meters on OM3 MMF.
 • Support at least 10km on SMF.
 • Support at least 40-km on SMF.
 • Support at least 10m over a copper cable assembly.
 • The decision to also include a 40 Gb/s rate objective is a critical one, and could cause the SG effort to be delayed or deadlocked.
100G and 40G Applications Recap

• 100G Applications
 • Data center interconnect
 • HPC (High Performance Computing)
 • Aggregation and Core interconnect
 • Enterprise campus interconnect
 • Server NIC cards (~ 2018)

• 40G Applications
 • Server NIC cards (~ 2013)
 • Server to switch connections
 • Pedestal servers
 • Rack servers
 • Blade servers
Single or Dual Rate Path

- 100G is ‘locked and loaded’
 - see dove_01_0507 for supporting details
- 40G still requires additional effort
- even 40G proponents do not want to hold up 100G (e.g. unanimous straw poll in Ottawa)
Advantages and Disadvantages

• Advantages
 • A more optimal solution for server NIC applications (10G->40G->100G)

• Disadvantages (Risks)
 • Fragmentation of R&D efforts (lack of critical mass on either 40G or 100G initially)
 • Industry confusion on “application versus rate”
 • Interoperability concerns (some vendors elect to implement 40G initially, whereas others implement 100G)
 • Potential to delay 100G. 100G project is ready to move forward. 40G still requires additional work.
 • “Muddies the waters”
Standard’s Impact

• The standard’s impact could be minimal (muller_01_0407.pdf):
 • MAC is (sort of) bit rate independent …
 • 100G PCS/CTBI proposal could be easily scaled to support either rate, however ….

• The standard’s impact could possibly be more significant – depending on the Task Force directions taken:
 • IF the MMF PHY chooses the 12x10G path with 8b/10b to more closely align with Infiniband – then not sure what the 40G MMF PHY would entail?
 • IF the 100G copper path is 4x25G, then would a 4x10G PHY be an independent effort – although easier if the same distance is chosen?
 • Backplane – does not exist in the current 100G path, this effort is incremental

• So there is still uncertainty if the PHY/PMD work is trivial for 40G or essentially twice the work of 100G only

• ALSO there is no precedent for IEEE developing two new significant ethernet rates on the same timeline

• BUT .. the standard’s effort is not the major concern here
Industry Impact

- Although the requirement for dual rates may initially be driven by the needs of two ‘distinct applications’, having two rates will ultimately force component and equipment vendors to support BOTH.
- Switches which connect to servers will require both rates upfront (40G downlink, 100G uplink)
- Domino effect. There are two ends to every link. 40G on one box forces 40G on other boxes.
- Requires the industry to develop 2 x MACs, 2 x PCS chips, 2 x PMA (serdes) chips, 2 x N PMDs.
- Maybe it is Triple rate ?? (40G LAN, 40G WAN, 100G)
Historical Perspective

• History has shown that standardizing two solutions simultaneously, is not a successful (or at least efficient) approach. One solution ultimately dominates the other (although both take the same amount of effort to develop initially).

• 10GE: LANPHY versus WANPHY
 • WANPHY was standardized as a WAN friendly rate for 10GE
 • component / system companies “forced” to develop WANPHY interfaces
 • but LANPHY ultimately won in the WAN as well, for cost/volume reasons
 • LANPHY shipments ~ 1M, WANPHY shipments significantly less
 • Result: a lot of wasted time and effort
 • WANPHY support still being added to new designs – and so it continues!!

• IETF VPLS (Virtual Private LAN Service)
 • IETF ‘standardized’ two solutions at the same time
 • initially resulted in interoperability issues between vendors (who choose to implement only one of the solutions)
 • end users ultimately forced vendors to implement both solutions
 • Result: a lot of wasted time and effort.
Historical Perspective (cont’d)

• 10G EFEC (ITU G.975.1)
 • multiple, incompatible high gain FEC algorithms ‘standardized’
 • no interoperability
 • not a big issue for initial application (long haul DWDM transport)
 • BUT .. lack of a single ‘standard’ FEC algorithm is slowing the adoption of integrated DWDM interfaces on client equipment (routers, switches, etc)
Summary

• The current 40Gb/s debate boils down to a decision on a Single Rate versus a Dual Rate path.
• This decision must not be taken lightly. There are a lot of ramifications (we have to live with our ‘mistakes’ for a very long time).
• While defining two (or more rates) initially and ‘letting the market decide’ is one (easy) approach, it is far from being the most efficient.
• Ethernet has been successful by defining the minimum solution set for a broad range of applications (thus providing clarity and focus for the industry).
• Recommendation:
 • HSSG proceed with a single 100G Rate PAR
 • If there is a distinct need/application for 40GE, then it should be addressed in a separate CFI/SG/PAR