Higher Speed Ethernet
An End User’s Perspective

Presented by
Mike Bennett, LBNL

802.3 Working Group Interim
Knoxville, TN
Discussion

- A little background on LBNL
- LBLnet
 - Topology
 - Infrastructure
- What’s wrong with LAG (802.3ad)?
- Thoughts on “motherhood and apple pie” objectives and the speed/cost formula
- Wrap-up
About LBNL

• Founded in 1931 by Ernest Orlando Lawrence
 – Winner of the 1939 Nobel Prize in physics for his invention of the cyclotron
• Leader in science and engineering research for more than 70 years
 – 75th anniversary this year
• Oldest of the U.S. Department of Energy's National Laboratories
• Conducts unclassified research across a wide range of scientific disciplines:
 – Fundamental studies of the universe
 – Quantitative biology
 – Nano-science
 – New energy systems and environmental solutions
 – Use of integrated computing as a tool for discovery
About LBNL

- We don’t get stock options, but we have a great view!
LBLnet

- LAN infrastructure and network connection support services to LBNL staff and research programs throughout the lab
- Since 1986, LBLnet has grown from 100 user attachments to over 13,000 device attachments, including:
 - Desktops and servers
 - High-performance clusters
 - Data acquisition devices and embedded systems
 - Building environment and security systems
- The LBLnet Services Group (LSG) supports a shared infrastructure in a highly heterogeneous environment.
LBLnet Services

- LSG directly administers and provides support for services including:
 - Domain Name System (DNS)
 - Windows Internet Name Service (WINS)
 - Boot Protocol Services (bootp)
 - Dynamic Host Configuration Protocol (DHCP)
 - Network Time Protocol Service (NTP)
 - Virtual Private Network Service (VPN), both software and hardware.

- We also work closely with the Computer Protection Program (CPP) staff
 - Network and systems security integrated in network at the edge and core of LBLnet
LBLnet infrastructure

- **Fibre cabling**
 - 4057 strands installed
 - 1% 100/140 micron legacy MMF
 - 82% 62.5 micron MMF
 - Mix of 160 MHz * Km and 200 MHz * Km
 - 17% SMF
 - Roughly 50 buildings are connected via fibre
 - Longest route ~ 2 Km
 - Most intra-building fibre is MMF and <= 300m
 - Inter-building fibre is a mix of MMF and SMF
 - Between 200m and 2000m
 - Almost no fibre to the desktop

- **Copper cabling**
 - Most buildings rewired with Category 5e
 - A few places still have Category 3
Nostalgia ...

- A slide from the past (before PowerPoint)

Technologies and equipment used

- IEEE802.3-10BaseX series excluding 10Base2
 - 10Base5 (Commonly know as ThickNet) still very useful
 - 10baseT usage growth continues
- FDDI over fiber mostly used in backbones
- FDDI over copper (Currently 25 Ports in Use)
- 802.3 LAN Statistics
 - 2168 Request for installations (this doesn’t account for all drops)
- Equipment Statistics
 - 7-AGS+/4 routers and 1 lonely P4200 Proteon
 - 16-DEC LANBridge100s and 9-LANBridge 500s.
 - 99 IEEE802.3 repeaters (local and remote)

LBLnet

LBL/ICSD/CNR

Ted G. Sopher
5 November 1993
LBLnet technologies and equipment

• Edited to avoid perception of vendor bias …
 – 4 routers
 – 102 non-modular switches
 – 58 modular switches
 – Total: 160 switches
 • All Ethernet!
 – Shut down 2 OC3 circuits used to support microwave LAN earlier this year
• 1000BASE-SX in the core
• Of the switches mentioned
 – 69 are End Of Life (EOL) status
 • In the process of replacing them (funded project)
• 53 different versions of OS!!
 – Trying to minimize this in the EOL upgrade process
LBLnet topology

- Simple star topology
On the topic of simplicity...

- Keeping the network simple is a prime directive for LBLnet staff. It allows us to:
 - Operate the network with 8 FTEs
 - Minimize troubleshooting and repair time
 - Minimize costs to the institution

 - Uptime for service switching = 99.999885%
 - Uptime for service VPN = 100%
 - Uptime for service DNS = 99.999981%
 - Uptime for service NTP = 99.999255%
 - Wireless is a secondary infrastructure
 - Uptime for service wireless = 99.998707%
 - Report excludes power outages and includes outages caused by end-users

- Bottom line: simplicity = lower operating costs
LBLnet topology

- In a month or so …

LEGEND

- 10 Mbps
- 100 Mbps
- 1 Gbps
- 10 Gbps

Lawrence Berkeley National Laboratory

Computer Infrastructure-LBLnet

Sanitized Logical Overview

10G security issues

M. J. Bennett 19 June 2006
LBLnet topology

- Next FY, assuming we get funded …

![Diagram of LBLnet topology](image)

- **LEGEND**
 - 10 Mbps
 - 100 Mbps
 - 1000 Mbps
 - 10 Gbps

- No more than 10 Gb/s possible

- Core Switch

- **Lawrence Berkeley National Laboratory**
 - Computer Infrastructure-LBLnet
 - Sanitized Logical Overview
 - 70G security issues
 - M. J. Bennett
 - 19 June 2006
A look at utilization

- Monthly snapshot

Note the 2-hour average
A look at utilization

• With this utilization one may wonder:
 – Why am I a proponent of the HSSG?
 • 7 years from start of last HSSG to implementation of 10G
 – One simple answer
 • The folks who have to transport our traffic need the bandwidth

• Why not use Layer 2 Link Aggregation (802.3ad)?
 – The utilization snapshot may lead you to believe we could just add a gig port and double the bandwidth?
 • If only it were that simple …
 • Aside from dealing with IP multicast on a LAG interface, here are a few reasons why a single higher-speed link is preferred
LAG (802.3ad) - A Temporary Solution

- Uneven distribution of traffic over LAGs
 - Requires vendors to implement complicated hashing functions for even traffic distribution
 - Requires vendors to implement per-port features on logical interface which complicates ASIC design
 - Most LAG/LACP implementation are limited to 8 members
 - Most routing protocol implementation are limited to 6 – 8 equal cost routes
 - Certain traffic patterns always cause inefficient link utilization
 - Inefficient traffic distributions for large flows
 - Video flows
 - Encapsulated traffic (e.g. MPLS, EoMPLS, IPSec Tunneling, FCIP)
 - >1 Gbps, 10 GbE host connections
 - 10 GbE Transparent LAN Services (TLS) data center to data center or intra Metro services
LAG (802.3ad) - A Temporary Solution

• LAG increases cost and complexity
• Difficult to plan for capacity and traffic engineering, especially in large networks (LAGs connected to LAGs)
• Routing optimization is best performed over fewer links
 – High bandwidth pipes are more attractive than multiple low bandwidth ones
• Higher TCO for multiple fibers in Metro/WAN deployments
 – Variable/long lead times on fiber makes it even harder to plan capacity
• Every port used for LAG cannot be used for revenue as a customer port
• Manageability/troubleshooting of multiple physical links for a single logical interface
• Difficult/expensive to implement security systems that require tapping link
Thoughts on non-controversial objectives

• No half-duplex necessary
 – Sample of 4,633 active switch ports
 • 0 ports (1000 Mbs) in half-duplex
 • 5 ports (10/100 Mbs) in half-duplex
 – Known to have hubs on the other end
 – Even less likely as host migrate to 1 GbE

• Don’t change the min and max frame sizes
 – No Jumbo frames necessary
 • We don’t use them in the LAN
 • I agree that we shouldn’t do anything to preclude them

• Need to support star-wired LANs using point-to-point links

• Use structured cabling referenced in ISO/IEC 11801:2002
A thought on the speed/cost formula

• The formula needs to be revisited
• One suggestion:
 – Create a formula per element of the Ethernet ecosystem
 • The LAN is where the 10X/3X formula applies
 • The “error” in the formula is not a matter of time to market
 • This would mean multiple formulae
 – LAN may be 10X/3X
 – WAN/Metro is probably higher than that
 – Data Center may be better
Ecosystem speed/cost formulae

- Consumer Broadband Access: \(aX/bX\)
- Broadband Access Networks
- Internet Backbone Networks
- Research, Education Networks
- Corporate Data Centers and Enterprise Networks: \(10X/3X?\)
- Content Providers: \(cX/dX\)
- Content Networks
- Internet Backbone Networks
- Research Networks
- R&E mix of the others?
Conclusions

• Should focus on a LAN reach objective up to 2 KM
• No half-duplex or changes to the minimum or maximum frame sizes
• Should be compatible with 802.3ad, but recognize it is a limited interim solution for increasing BW
• Should not get bogged down in trying to spec connectors, etc
 – No connector wars!
• We need to redefine the speed/cost formula
 – Perhaps define a few
Thanks!

• Questions or comments?
 – mjbennett@lbl.gov