Data Center Fiber Cabling
Topologies and Lengths

Paul Kolesar
IEEE 802.3 HSSG, September 2006
Purpose and background

• Provide channel length distributions within Data Centers as guide for setting distance objectives

• Focus on Data Center cabling in support of view that >10G applications will initially be largely DC centric

• Data gathered from CommScope corporate sales data base of pre-terminated cabling and patch cords
Primer on Data Center Cabling
What is pre-terminated cabling?

- Custom-length cabling delivered with factory-installed connectors on both ends
- Cable is plugged into the back of patch panels

MPO Plugs (12-fiber array connectors)

OM3-type Cable (aqua color)
What is pre-terminated cabling?

- Arrays are typically fanned out to present multiple duplex ports at front of panel

Front side of panels present duplex ports

Array cables plug into back of fanouts
Why is pre-terminated cabling relevant?

• Speeds installation and turn up
 – Eliminates field termination process
 – All assemblies factory tested
• Highly advantageous for Data Center builds
 – Primary Data Center cabling choice for SYSTIMAX Solutions customers

• Length distribution directly applicable to Data Center channels
• Array cabling supports parallel transmission
TIA TR42 standardized array cabling for parallel applications

ANSI/TIA-568-B.1-7
“Guidelines for Maintaining Polarity Using Array Connectors”
Approved: January 13, 2006

Addendum to TIA 568-B.1 structured cabling standard

Structured cabling now extends beyond duplex
Basic p2p parallel channel topology

Channel consists of:
1 cable
2 cords
2 connections
Central cross connect topology

Channel consists of:
2 cables
3 cords
4 connections

Central Cross Connect

Array Cables (Permanent Links)

Patch Cord 1

Patch Cord 2

Patch Cord 3

Patch Cord 4

Xcrv
Why use a central cross connect?

- Allows changeable connectivity between any equipment area
 - The hub of star-wired architecture
 - Greater flexibility with less cabling than p2p
P2P requires more cabling

- For similar connectivity capability relative to central cross connect for star wiring
Why are central cross connects relevant?

• Important and popular for managing connectivity, especially in larger data centers

• In the following analysis the data on array cable lengths and patch cord lengths must be combined to form the length of complete channels

• To derive channel length distributions, one must account for some mixture of central cross connect topologies and basic p2p topologies, but the precise mix is unknown
Data Center Cabling Length Data
Array cable length distribution

- Many thousands of 12-fiber units

Distance between fiber panels in data centers

73 m
Permanent link length distribution

• Longer tail emerges

Distance of Permanent Link (i.e. w/o cords)
assuming ~1/2 are concatenated thru central cross connect

128 m
Patch cord length data

- Distilled from data on tens of thousands of cords
- Mean Length = ~11 ft Standard Deviation = ~12 ft
- Two Standard Deviations covers ~94% within this distribution

<table>
<thead>
<tr>
<th>number of cords</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td># std dev</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft</td>
<td>34</td>
<td>55</td>
<td>74</td>
<td>91</td>
</tr>
<tr>
<td>m</td>
<td>11</td>
<td>17</td>
<td>22</td>
<td>28</td>
</tr>
</tbody>
</table>

3 cords covers central cross connect topology
Putting it all together

- Recommend aiming to cover 90 to 95% of Data Center channel lengths
 - Precedent: 300 m covers similar percentage of in-building LAN backbones
- Using a simple summation of constituent lengths near this coverage level gives:

<table>
<thead>
<tr>
<th>Distance Requirements at ~95% Coverage</th>
<th>ft</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Link Allocation</td>
<td>420</td>
<td>128</td>
</tr>
<tr>
<td>3 Patch Cord Allocation</td>
<td>74</td>
<td>22</td>
</tr>
<tr>
<td>Total Channel Allocation</td>
<td>494</td>
<td>150</td>
</tr>
</tbody>
</table>

Recommend setting short reach length objective = 150 m
Backup Material
Analytical approach using statistics

- Using means and standard deviations for all component lengths