NTT Communications Global IP Network

Ethernet in the Network Service Provider

Presented by: Peter Schoenmaker pds@ntt.net

Date September 13th, 2006
Summary

- NTT Communications Global IP Network summary, and Architecture
- How Ethernet is used
- What we like
 - Some of this is IEEE design, some is vendors, and some is dumb luck
- What we would like to see
 - Specific to our application
What is NTT Communications Global IP Network (GIN)

- Global Internet service provider
 - Network in Asia, United States, and Europe
 - Singapore, Hong Kong, Taiwan, Australia, Japan, South Korea, United States, United Kingdom, France, Germany, The Netherlands, and Spain
 - Sonet/SDH network on long haul
 - nxSTM64 (OC192) Domestic United States
 - STM64 nxSTM16 Europe
 - nxSTM1 nxSTM4 nxSTM16 nxSTM64 Asia
 - nxOC192 US-Europe
 - 7xSTM64 US-Japan (10xSTM64 end of 2006)

- Mix of Facilities and Non Facilities based provider
 - Lease capacity in US, Europe, and parts of Asia
 - NTT Communications owns capacity on Transpacific cables systems
 - Facilities based in Japan
Pop Architecture Generation 4 Circa 2005

- **1GE**
- **10GE**
- **OC48**
- **OC192**

- **Intercity Circuits**
- **Peering**
- **Customers**

- **Aggregation Layer**

- **Juniper M40**
- **Juniper T640**
- **Cisco 7600**
Next Generation

- 1GE
- 10GE
- OC48
- OC192
- OC768
- Higher speed ethernet

Diagram:
- TDM agg
- Multichassis/NG Core
- Ethernet agg
- Intercity Circuits
- Peering
- Customers

Legend:
- Orange: 1GE
- Red: 10GE
- Green: OC48
- Blue: OC192
- Brown: OC768
- Gray: Higher speed ethernet
GIN LAN History

- Dependant on router hardware
 - Must have IP interface to be useful
- >1999
 - FastEthernet
 - FDDI
- 1999
 - First GigabitEthernet deployment
 - Router: Juniper M40, Cisco GSR 12000
 - Ethernet Switch: Packet Engines, Foundry Networks
 - nxFE aggregated to GE
 - Scaling to nxGE aggregated to nxGE LAG
- 2002
 - First 10GigabitEthernet deployment
 - Router: Juniper T640
 - Ethernet Switch: Foundry Networks BI4000, Cisco 7600
 - nxGE aggregated to 10GE
 - Scaling to nx10GE aggregated to nx10GE LAG
- Today
 - 10GigabitEthernet customers aggregated to 2x10GE LAG
Distance increase 10GE (LAN PHY)

- Initially intrapop connections
- Expanded to metro circuits
 - Connected multiple pops in the same MSA
- Evaluating Long haul
 - Lease capacity
 - Dependant on carrier service availability
- Have not used 10GE WAN PHY
 - Delayed availability from vendors
Driving factors

- Rapid customer adoption of 10GE
- Traffic doubles every 12 months in GIN network
Benefits of 10GE

- **Cost**
 - Cheaper than OC192/STM64 interfaces
 - True cost or market position?

- **Equivalent to OC192/STM64 speed**
 - OC192/STM64 had no performance benefit
 - OC48/STM16 chosen over GigabitEthernet for 2.5 x speed
 - OC192/STM64 troubleshooting advantage

- **Standardize on a single optic (10GBase-LR)**
 - All connection types
 - Customer interfaces
 - Intra POP interfaces
 - Metro Links
DWDM

- Cost is the Lambda (the amount of bandwidth that will fit into 100Ghz/50Ghz/smaller lambda spacing)
 - 3 Years circuit cost 18x interface hardware costs
 - OC192 unprotected leased circuit <600mi
 - Japan-US 640G capable submarine system
 - 64 x 10G wave lengths
 - New cable system must be built to add more capacity

- Software tunable DWDM 10GE optics
 - Available today in IP routers

- 40G DWDM trails today
 - Multiple vendors have DWDM boxes capable of 40G/lambda
 - Commercial trials are continuing
 - GIN network needs 40G in approximately 18 months
 - Expect to see IXC networks go from nx10G to nx40G
Higher Speed Ethernet

- 100Gbps should be minimum target speed
 - 3 years for development + 3 years for adoption
 - Anything less than 100Gbps will be too small
- Serial interface type would be ideal
 - How much bandwidth can fit into a single lambda
 - If multilane, each lane must be greater than 10G
- 2km meets most of our distance needs
 - Commonality provides better efficiencies in operations