

Objectives for HSSG

Peter Tomaszewski Scientist, Signal Integrity & Packaging

September 20 – 21, 2006

- Propose objectives for:
 - MAC Data Rate
 - Reach Objectives
 - Standardize yGMII Interface
 - BER

The Ethernet Ecosystem

IEEE 802.3 HSSG "Call-For-Interest", 7/2006

Content Providers

Content **Networks**

Enterprise Networks

Internet Backbone **Networks**

Research **Networks**

Corporate Data Centers and

Enterprise

(High Performance **Computing)**

Internet eXchange and Interconnection Points Research, Education and Government **Facilities**

(High Performance **Computing)**

FORCE Bandwidth and Growth Projections

Resear

Notwor

IEEE 802.3 HSSG "Call-For-Interest", 7/2006

Consumer Broadband

Comcast: 4x10 GbE LAG today, 3X BW increase in 3 to 5 years

Yahoo!: 4x10 GbE LAG today, **BW** doubling in <12 months

Broadband

Cox: 10 GbE today, BW growth 50-75% per year for next 3 - 5 years

Internet Backbone Networks

LLNL: 4x10 GbE LAG and 500x10 GbE ports today, 10x speed requirement in 5 years on deployed ports

Cisco: 10GbE today, 40+ GbE (100 GbE preferred) in 5 years

Internet Exchanges: Up to 8x10 GbE LAG today, BW growth 50-75% per year for next 3 - 5 years

Level 3: 8x10 GbE LAG today.

BW growth 15x in 5 years

(~72%/year)

ESnet: 10 GbE today, 10 Gbps on 20+ links 5 years from now: 5-10 locations will require more than 40 **Gbps**

Corporate Data Cente and

Enterprise

and Government **Facilities**

FORCE MAC Data Rate Objective

- MAC Data Rate Objective 100 Gb/s
 - 40 Gb/s insufficient
 - Traffic is surpassing this today
 - Can be achieved with 4 x 10 GbE LAG
 - Scaleable Data Rate not desirable
 - It's Ethernet
 - Cheap
 - Simple
 - Interoperable
 - Lane bonding approach acceptable to achieve 100 Gb/s
- Objective should support Clause 43 LAG

FORCE Consideration of Reach Objectives

Summary of 10GbE today

Fiber	10GBASE-SR / W	850 nm	Serial	300 / 33 m	50 um / 62.5 um MMF
1	10GBASE-LRM	1310 nm	Serial	220 m	50 um / 62.5 um MMF
	10GBASE-LX4	1310 nm	WDM	300 m	50 um / 62.5 um MMF
				10 km	Single Mode Fiber
	10GBASE-LR / W	1310 nm	Serial	10 km	Single Mode Fiber
	10GBASE-ER / W	1550 nm	Serial	40 km	Single Mode Fiber
	10GBASE-ZR / W*	1550 nm	Serial	80 km	Single Mode Fiber
Copper	10GBASE-CX4		4 Lanes	15 m	Twinaxial
	10GBASE-T		4 Pairs	100 m	UTP (CAT6A)
Backplane	10GBASE-KX4		4 Lanes	1 m	Improved FR-4
	10GBASE-KR		Serial	1 m	Improved FR-4

^{* -} Not specified by IEEE Std. 802.3

Suggested Reach Objectives – 300 m / 10 to 40 km

FORCE Architecture Considerations

yGMII Interface

- Objective should be added to standardize interface
- Needs to make sense in relation to PMD
- No shims wanted

yGMII / PMD

- Need an architecture that allows pin count reduction in future
- Example
 - Gen 1: 10 Gb/s per lane / λ
 - Gen 2: 20 Gb/s per lane / λ
 - Gen 3: 100 Gb/s per λ

Front-End Architecture Example: 100Gbps 10λx10 Interface

- Great WAN Interface
- Could be
 - Coiled out of the module
 - LC or SC
 - Larger then 300pin MSA non-pluggable
- Best density: one per blade... Maybe two.

Front-End Architecture Example: 100Gbps 5λx20 Interface

- Efficient LAN Interface
 - Would be dense enough to place four per blade
- 22.2Gbps CEI SERDES could be used front end and back end.
- Module could be XENPAK size with Launch cable coiled within the blade or possible direct fiber connectors for short reach
- Power efficient / Space efficient / Easiest to route.
- ASIC Technology in complex environments such as the NPU will limit SERDES to about 10Gbps per channel.

Front-End Architecture Example: 100Gbps 1λx100 Interface

Optics Module

- Probably 2013 ... May not be cost effective for either LAN or WAN applications until about that time frame
- Would be dense enough to place four per blade
- XFI interface could be replaced with five lanes of 22.2Gbps CEI

FORCE BER ... Thoughts

Channel BER

- Customers want to see a frame loss of zero
- Systems architects want to see a frame loss of zero
- Zero error is difficult to test and verify ... none of us will live that long
- BER should be tested to 10E-12
 - Component cost is a real issue
 - It can be tested and verified at the system design level
- Standardize extrapolation to 10E-15

FORCE Summary Slide

- MAC Data Rate should be 100 Gb/s
- Solution should support Clause 43 LAG
- Specify yGMII Interface
- Specify Lane / λ architecture that makes sense
- Test BER to 10^-12
- Standardize extrapolation of BER to 10^-15