100GE and 40GE PCS Proposal

Mark Gustlin, Gary Nicholl, Oded Trainin

IEEE HSSG September 2007
Supporters

- Pete Anslow - Nortel
- Med Belhadj – Cortina
- Brad Booth – AMCC
- Frank Chang - Vitesse
- Chris Cole – Finisar
- Craig Hornbuckle - SMI
- Arthur Marris - Cadence
- David Martin – Nortel
- Shinji Nishimura - Hitachi Ltd.
- Krishnamurthy Subramanian – Force10
- Hidehiro Toyoda - Hitachi Ltd.
Agenda

• Review of the 100G PCS/CTBI proposal

• Issues Update
 – How to support 40GE?
 – How does variable skew impact the PCS
 – How many virtual lanes do we need for 100GE and 40GE
 – Should we support error rate monitoring
 – What should the alignment block look like
 – Finding VL alignment
 – Overhead compensation
 – Skew
Goals/Motivations

• Specify a 100GE and 40GE PCS that can provide coding for the electrical interface as well as the optical interface

• The PCS should allow for a simple optical module
 – No need for realignment in the optics (due to electrical or optical skew)
 – Optical module should not need to perform any coding or know about the coding

• Ensure that the PCS can scale with technology
 – Single PCS for current and many future PMDs
 – Single PCS for current and future optical module interfaces

• Provide a PCS with low overhead
 – Line rate 100GE or 40GE regardless of packet size
Possible 100G Implementation Split

- Electrical interface is high speed parallel serdes
- PCS is generic
- Relatively simple optical module (no PCS)
- PCS provides coding for electrical and optical

CGMII: 100G MII (logical interface?)
CTBI: 100G Ten Bit Interface?

• 40G Implementation split can be identical
Proposed 100GE/40GE PCS Overview

• 64B/66B based PCS (100G aggregate)
• 10 Lane MAC/PCS to PMA/PMD Electrical Interface for 100GE
 100G Ten Lane Interface
 Each lane runs at 10.3125G
 100G data is inverse multiplexed across the electrical lanes (66 bit blocks)
• 4 Lane MAC/PCS to PMA/PMD interface for 40GE
• Support 1-10 PMD lanes all with the same electrical Interface and PCS
• PMA maps n lane electrical interface to m lane PMD
 PMA is simple bit level muxing
 Does not know or care about PCS coding
• Alignment and most skew compensation is done in the Rx PCS only
Key Concept – Virtual Lanes

- Data from the MAC is first encoded into a continuous stream of 64B/66B blocks (100G or 40G aggregate stream).
- The 100G aggregate stream is split into a number of ‘virtual lanes’, also based on 64B/66B blocks.
- Each virtual lane is assigned a unique marker (as part of an alignment block).
- The number of virtual lanes generated is scaled to the Least Common Multiple (LCM) of the n lane electrical interface and the m lane PMD.
 This allows all data (bits) from one virtual lane to be transmitted over the same electrical and optical lane combination.
 This ensures that the data from a virtual lane is always received with the correct bit order at the Rx PCS.
- The virtual lane marking allows the Rx PCS to perform skew compensation, realign all the virtual lanes, and reassemble a single 100G or 40G aggregate stream (with all the 64B/66B blocks in the correct order).
4 Lane PMD Example (20 VLs)

CGMII

Rate Adjust FIFO
64B/66B Encoding
X^58 Scrambling
Lane Striping (66b per virtual lane)
Add Alignment Blocks
2:1 Virtual lane bit Muxing

CTBI

PMA (10:4 bit gearbox)

MDI

PMD

CGMII

Rate Adjust FIFO
64B/66B Decoding
X^58 Unscrambling
De-stripe (66b per virtual lane)
Alignment (66b and virtual lane)
1:2 Virtual lane bit Demux

CTBI

PMA (4:10 bit gearbox)

MDI

PMD
Bit Flow Through

100G 4 PMD Lanes
Two Virtual Lanes per CTBI Lane, skew added

Data moved due to electrical skew on the CTBI

Data moved due to the combination of electrical skew on the CTBI and optical skew, but virtual lane data always remains together (although on different CTBI lanes then it was originally sent)

Virtual Lanes are back with their bits in order, just transposed to different locations and skewed
Issue Updates

• How to support 40GE?
• How does variable skew impact the PCS?
• How many virtual lanes do we need for 100GE and 40GE?
• Should we support error rate monitoring?
• What should the alignment block look like?
40GE “CTBI”

- Assume Optics/Interfaces can be: 4 lanes, 2 lanes or 1 lane
- We would need 4 VLs to handle this case
- Mux in optics is very simple when required
- Everything else is the same as 100GE CTBI/PCS….
- The figure below shows combinations of electrical and optical widths that can be supported
Variable Skew Handling

• What happens if skew varies over time?
 – Two main reasons it will
 • Relative or uncorrelated jitter/wander
 • Laser temp variation which changes the wavelengths and hence the propagation time.

• First question is how much the skew can vary over time?
• Pete Anslow’s presentation has the details, ranges from psecs to nsecs depending on the technology chosen
Bit Flow Through

Variable skew due to relative wander

Variable skew due to laser temperature variation (also some relative wander)

Variable skew due to relative wander
TX PMA Design

- The PMA is a gear box, 10 bits to 4
- Variable skew on electrical I/F will be very small, most skew is constant (PCB traces, ASIC skew etc.)
- All PMD lanes driven with the same clock, should need at most a few bits of retiming buffer per lane
- SFI5.2 relative wander is specified as 1.5UI, assume we would need a similar amount
RX PMA Design

• We can have much more variable skew for this case due to wavelength variation

• You would need retiming buffers at around 2x the worst case delay variation expected to handle this case
RX PCS Design

- Variable skew on electrical I/F will be very small, most skew is constant (PCB traces, ASIC skew etc.)
- All lanes driven with the same clock, might need at most a few bits of retiming buffer per lane?

 Could be taken up in the de-skew logic that already exists in the RX PCS
- SFI5.2 relative wander is specification 1.5UI, assume we would need a similar amount
Variable Skew Handling

• Find the maximum variable skew for all the PMDs…
 Actually we only care about the gearbox ones, so 10km and 40km only?

• This is not a concern for a 10 lane 100GE PMD (with a 10 lane electrical interface)?
 If interface is clocked on a per lane basis?

• Also not a concern for a 4 lane 40GE variant?
 At least for a 4 lane electrical and 4 lane PMD
How Many Virtual Lanes for 100GE?

- For each PMD objective, what is the number of lanes being considered?
- Support at least 10km on SMF
 - 4 wavelengths
- Support at least 100 meters on OM3 MMF
 - 10 fibers
- Support at least 40-km on SMF
 - 4 wavelengths
- Support at least 10m over a copper cable assembly
 - 10 lanes
How Many Virtual Lanes are Needed for 100GE?

<table>
<thead>
<tr>
<th>Number of Electrical Lanes</th>
<th>Supportable PMDs</th>
<th>Virtual Lanes Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>10, 5, 4, 2, 1</td>
<td>1, 2, 3, 4, 5, 6, 8, 10, 12</td>
<td>120</td>
</tr>
<tr>
<td>10, 5, 4, 2, 1</td>
<td>1, 2, 3, 4, 5, 10</td>
<td>60</td>
</tr>
<tr>
<td>10, 5, 4, 2, 1</td>
<td>1, 2, 4, 5, 10</td>
<td>20</td>
</tr>
<tr>
<td>10, 5, 2, 1</td>
<td>1, 2, 5, 10</td>
<td>10</td>
</tr>
</tbody>
</table>

- It seems that the sweet spot is still 20 VLs…
- Supports currently envisioned PMDs
- Supports Electrical lane evolution such as a 4x25G interface
How Many Virtual Lanes for 40GE?

• For each PMD objective, what is the number of lanes being considered?
• Support at least 100m on MMF
 4 fibers
• Support at least 10m over a copper cable assembly
 4 lanes
• Support at least 1m over a backplane
 4 lanes

<table>
<thead>
<tr>
<th>Number of Electrical Lanes</th>
<th>Supportable PMDs</th>
<th>Virtual Lanes Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4, 2, 1</td>
<td>1, 2, 4</td>
<td>4</td>
</tr>
</tbody>
</table>
Lane Error Detection?

- Should we include a way to diagnose errors on a per virtual lane basis?
 Mostly useful for lab debug etc?

- We could add a CRC or BIP block as part of the alignment word

- Would it allow us to isolate faults to a fiber, wavelength or electrical lane?
 No in most cases
 But over time you can sometimes tell…

- Use 8 or 16 bits for a CRC8 or CRC16, or BIP8 or BIP16
 Would be calculated over the data since the previous alignment word
 BIP is sufficient for error isolation and simpler?
More on Error Detection

• If we Need better detection, check at each interface boundary?
 That would allow us to have better error detection
 Just check, no need to generate?

• Each Interface detects the frame and calculates the checksum
What should the Alignment Word look like?

• Requirements:

 Significant transitions and DC balanced – word is not scrambled
 Keep in 66 bit form, but no relation to 10GBASER is needed
 Contains Virtual Lane Identifier
 BIP or CRC?

Proposed Alignment Word

<table>
<thead>
<tr>
<th>10</th>
<th>Frm1</th>
<th>Frm2</th>
<th>TBD</th>
<th>TBD</th>
<th>~BIP</th>
<th>BIP</th>
<th>~VL#</th>
<th>VL#</th>
</tr>
</thead>
</table>
What is the right frame pattern?

- **Requirements:**

 Significant transitions and DC balanced – word is not scrambled

 Keep the number of consecutive identical digits very low

 When muxing these together the number multiplies (if no skew)

- **Options**

 Re-use SONET Frame pattern 0xF628 –

 But has up to 4 consecutive digits?

 Invent new one: 0x5566 – has up to 2 consecutive digits
Finding VL Alignment

• After reception in the rx PCS, you have x VLs, each skewed and transposed
• First you find 66bit alignment on each VL

 Each VL is a stream of 66 bit blocks

 Same mechanism as 10GBASE-R (64 valid 2 bit frame codes in a row)
• Then you hunt for alignment on each VL
• Alignment is declared on each VL after finding 4 consecutive non-errored frame patterns in the expected locations (16k words apart)
• Out of alignment is declared on a VL after finding 4 consecutive errored frame patterns
• Once the alignment pattern is found on all VLs, then the VLs can be aligned
Accounting for the Alignment Overhead

- Proposal is to send alignment words periodically on each VL
- If we send an alignment word every 16k 66 bit words, that is once each ~200usec
- On average you need to delete 2.5B of IPG per packet for Jumbo packets to accommodate clock differences and alignment overhead

<table>
<thead>
<tr>
<th>For 100GE Idle compensation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface bit rate</td>
<td>1E+11</td>
</tr>
<tr>
<td>Frame size (bytes)</td>
<td>9600</td>
</tr>
<tr>
<td>Idles per ethernet frame (bytes)</td>
<td>12</td>
</tr>
<tr>
<td>Packets per second</td>
<td>1299241</td>
</tr>
<tr>
<td>Idle bits per second</td>
<td>124727159</td>
</tr>
<tr>
<td>Clock mismatch (ppm)</td>
<td>200</td>
</tr>
<tr>
<td>Alignment mismatch (ppm)</td>
<td>61</td>
</tr>
<tr>
<td>Total ppm mismatch</td>
<td>261</td>
</tr>
<tr>
<td>Total bits per second mismatch</td>
<td>26103516</td>
</tr>
<tr>
<td>Ratio (Idles/Mismatch)</td>
<td>4.8</td>
</tr>
</tbody>
</table>

- An alternative is to increase the clock rate to account for the alignment overhead
- If we send an alignment block once every 1375 blocks, the lane clock rate is 10.32GHz
Skew Numbers

- What is the maximum skew for the various interfaces?
- This drives the size of the de-skew memory in the Rx PCS

<table>
<thead>
<tr>
<th>PMD Type</th>
<th>Maximum Skew</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>100m OM3</td>
<td>~30nsec?</td>
<td>10 lanes</td>
</tr>
<tr>
<td>10km SMF</td>
<td>< 20nsec?</td>
<td>4 lanes</td>
</tr>
<tr>
<td>40km SMF</td>
<td>< 1nsec?</td>
<td>4 lanes</td>
</tr>
</tbody>
</table>

- Note that 1usec at 100Gbps = 100kbits of memory
- Numbers depend on what technology is ultimately used!
Re-name CTBI

• CTBI and XLFBFI - don't really like the XLFBFI, but it is 40G Four Bit Interface (C=100, XL = 40)

• Better name: SEI-x.y

• Scalable Ethernet Interface – BW class . Version
 SEI-1.1 (4x10G)
 SEI-1.2 (1x40G)
 SEI-2.1 (10x10G)
 SEI-2.2 (4x25G)
Issues/Next Steps

• Investigate error conditions
 Scrambler error multiplication
 Alignment errors etc.

• Estimate the complexity of the PCS

• Fully define allowable skew

• Explore if the same PCS can be used for backplane and copper interfaces
Summary

• The proposed 100GE and 40GE PCS allows support for most PMD configurations
• Complexity is reasonable within the PCS
• Complexity in the optical module is low
• Based on proven 64B/66B framing and scrambling
• Electrical interface is feasible at 10x10G or 4x10G
• Allows for a MAC rate of 100.000G or 40.000G
• PCS and alignment overhead very low and independent of packet size
• Supports evolution of optics and electrical interfaces