HSSG DRAFT TUTORIAL
MAC / PHY

John Jaeger, Infinera
Overview – 100G MAC & PHY

• Consistent with previous Ethernet rates, extension to 40,000 & 100,000 Mb/s data rates
 • Frame format; Services; Management attributes
 • MAC
 • Proposing no changes to the MAC operation
 • Technical feasibility material reviewed:
 • CRC checker, general MAC functions, gear-boxes, host interfaces – roll-ups at .13um & 90nm data points
 • No issues or concerns identified
 • PCS
 • Specified PCS(s) need to accommodate:
 • 40G backplane PHY; 40 & 100G copper cable PHYs; 40 & 100G MMF PHYs and 100G SMF PHYs
 • Commonality, leveraging existing 10G technology, and working with the specified multi-channel/cable/fiber/wavelength PMDs will be examined
 • Two example approaches reviewed (next slides)
CTBI Technical Overview

- Standard 64B/66B PCS (running up to 10x faster)
- 100G Example: 10 Lane Electrical PCS to PMA/PMD Interface (CTBI)
 - 64B/66B aggregate is inverse mux’ed to Virtual Lanes
 - A unique identifier is added to each Virtual Lane on a periodic basis
 - Virtual lanes are bit mapped to/from the 10 CTBI electrical lanes
 - Virtual lane alignment and skew compensation is done in Rx PCS only
- PMA maps 10 lane CTBI to n lane PMD
 - PMA is simple bit level muxing and demuxing
 - no realignment in PMA (for either electrical or optical skew)
- PCS and Virtual Lane overhead is very low, and independent of frame size
The PME aggregation concept from 802.3ah can be used with existing 10GBASE PHYs – Aggregation at the Physical Layer (APL)

Variety of fragment format considerations discussed (header, size, fragment CRC…)

APL:
- Assumes equal speed links, point-to-point, & full duplex links
- Resilient and scalable
- Ensures ordered delivery and detects lost or corrupted fragments
- Minimal added latency
- Fits well with multi-port (quad/octal) PHYs

An APL control protocol would be specified
Physical Layer Specifications to be Defined

<table>
<thead>
<tr>
<th></th>
<th>40G</th>
<th>100G</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least 1m backplane</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>At least 10m cu cable</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>At least 100m OM3 MMF</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>At least 10km SMF</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>At least 40km SMF</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
MMF PMD Review (40G and 100G)

- Objective: At least 100m on OM3 MMF (40G and 100G)
- Platform: Parallel fibers; ~10Gbps/ch; 850nm VCSEL arrays
 - Combines existing 10GbE serial and 12x2.7G (or (4+4)x2.5G) parallel product technologies - both are technically sound and economical
 - Considering 10x10.3Gbaud (64/66), 12x10Gbaud (8B/10B), others
 - Considering WDM (e.g. 2 λ’s) to reduce fiber count/cost
- Advantages:
 - Low power for ~100m reach - initially ~3W (~1.5W) for 100G (40G)
 - Small footprint for high-density interconnects
 - Low cost
- Early Demo: 12x10GbE; >300m by IBM/Picolight; OFC 2003
100G and 40G Form Factors

100G Proven Technologies

- 10 Gb/s SFP+, XFP
- XENPAK
- (4+4)x10 Gb/s
- POP4
- 12x2.7 Gb/s
- SNAP12

40G Proven Technologies (QSFP also defined)

- 10 Gb/s SFP+, XFP
- XENPAK
- (4+4)x10 Gb/s
- POP4
- (4+4)x2.5 Gb/s
- SNAP12

100G Proven Technologies

- 10 Gb/s SFP+, XFP
- XENPAK
- (4+4)x10 Gb/s
- POP4
- 12x2.7 Gb/s
- SNAP12
Economic Feasibility - VCSEL Yield

10x10G VCSEL yield is necessary for cost feasibility

- VCSEL array is only a small portion of a 10x10G overall cost (same applies to 1x10G and 12x2.7G)
- Random microscale fallout:
 - 12x a small number is still a small number - not significant factor
- Areal-dependent performance fallout:
 - Affects 1x and 12x similarly (slight penalty for 12x, less for 4x)

Array yield will not be a significant cost factor
Technical Feasibility - VCSEL Reliability

Wearout Time (Depends on uniformity)
- Perfect uniformity \rightarrow 12x same as 1x
- Exp. reports: 12x wearout time $\sim\frac{1}{2}$ as for 1x

Random Failures
- 12x array failure rate nearly 12 times the 1x failure rate
- Virtually all “random” failures are eliminated through burn-in

ESD-Related Failures
- Above-threshold ESD events damage 1x and 12x about equally

Non-Hermetic Packaging
- 12x3G VCSELs robust to harsh environments
MMF Data, Conclusions

Burn-in Fallout
- 12x3G only slightly higher than 1x3G
- 1x10G only slightly higher than 1x3G
- \(\therefore\) 10x10G fallout expected to be only slightly higher than 12x3G

Field Data
- For 1x10G and 12x3G products (\(10^4\)-\(10^6\) each), JDSU has not experienced any failures due to VCSEL manufacture/technology

Expectation
- 10G VCSEL technology will mature to the level that 3G is today

Conclusions
- The MMF PMDs will be there for 100Gig and 40Gig Ethernet
- The MMF PMDs will be cost effective
- The MMF PMDs will be reliable
SMF PMD Technical Alternatives

<table>
<thead>
<tr>
<th>SMF Technology</th>
<th>10km 1310nm</th>
<th>40km 1310nm</th>
<th>10km 1550nm</th>
<th>40km 1550nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x10G DML</td>
<td>OA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10x10G ML</td>
<td>OA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5x20G / 4x25G DML</td>
<td>cole_01_1106 traverso_02_0307</td>
<td>OA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5x20G / 4x25G ML</td>
<td>cole_01_0307 jiang_01_0407 traverso_02_0307</td>
<td>OA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x50G DQPSK ML</td>
<td>OA + DC</td>
<td>+ DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1x100G Serial ML</td>
<td>OA + DC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- OA = Optical Amplification (or APD), DC = Dispersion Compensation
- Green shading designates alternatives under consideration by HSSG contributors.

IEEE 802.3 Higher Speed Study Group - DRAFT TUTORIAL

50
10x10G 1550nm CWDM DML Transceiver

- 8 x 10Gb/s CWDM DFB array
- 1470 – 1610nm, 20nm spacing
- Open, clean 10G back-to-back eyes

- 10G 1550nm DFB array component discussion; clairardin_01_0107
- CyOptics (DFB array,) Kotura (Mux)

TX Mux designed with broad Gaussian 6.4nm Passband allowing 4nm for DFB registration. 5pm/°C Δλ/ΔT difference between Si and InP over Temp Range provides for 20°C for temperature differential across chip. High thermal conductivity of Si provides good thermal management.
4km/10km 4x25G 1310nm EML Transceiver

- OpNext 4x25G EML Transceiver discussion; traverso_02_0307
- JDSU 25G EML components discussion; jiang_01_0407
40km 4x25G 1310nm EML OA Transceiver

- Finisar 1310nm Optical Amplification discussion; cole_01_0507

Required -22dBm Receiver Sensitivity is achievable with SOA technology.
10x10G 1550nm DWDM EML Transceiver

- Infinera 100Gbps 1550nm PIC components; jaeger_01_0107.
- Example of future cost reduction approach for high volume applications.
Tutorial Material: HSSG Copper

Chris Di Minico
High Speed Copper Interconnect: Applications

Intra/Inter rack/cabinet applications and High Performance Computing Interconnect

TIA-942 - Cabinet and rack height
- The maximum rack and cabinet height shall be 2.4 m (8 ft).
- Preferably no taller than 2.1 m (7 ft) for easier access to the equipment or connecting hardware installed at the top.
Twinaxial copper cable assembly

- 100 ohm 8 pairs – 16 conductors
- 28 AWG - 5.6 mm - 7.2 mm (0.220 in – 0.281 in) – Leoni twinaxial designs
- 250 µm - 12-fibers groups for use with multifiber connectors

- 12-Fiber OFNP Fiber Optic Cable 4.4 mm (0.17 in)
- 24-Fiber OFNP Fiber Optic Cable 8.3 mm (0.33 in)
Cable assemblies - 28 AWG/24 AWG/28 AWG ADV-D
10 meter

Source: Leoni High Speed Cables

Leoni twinaxial cable: advanced designs in comparison to nominal CX4/Infiniband constructions both electrical and mechanical

Source: Leoni High Speed Cables
802.3ap - Ethernet Operation over Electrical Backplanes

802.3 ap Insertion Loss vs twinaxial cable assembly IL

802.3ap – signaling 10.3125 GBd
Eye Patterns for 24 AWG cable -10 to 12 meters

Various levels de-emphasis without equalization

Source: Herb Van Deusen, W.L. Gore
Lane Rate, Signaling rate, channel bandwidth

10 m cable + connectors @ 6 dB Margin

Maximum achievable lane rate for each coding gain

<table>
<thead>
<tr>
<th>Maximum Lane rate Mb/s</th>
<th>Maximum signaling rate Mbaud</th>
<th>Info bits/baud/dim</th>
<th>Modulated Info bits/baud/dim (2)</th>
<th>Channel bandwidth MHz</th>
<th>Copper Gauge AWG</th>
<th>Code gain dB</th>
<th>Length meters</th>
<th>Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10889.28</td>
<td>8180.00</td>
<td>1.33</td>
<td>1.33</td>
<td>4090.00</td>
<td>28</td>
<td>0</td>
<td>10</td>
<td>PAM-3</td>
</tr>
<tr>
<td>13984.52</td>
<td>9476.64</td>
<td>1.38</td>
<td>1.48</td>
<td>4738.32</td>
<td>28</td>
<td>2</td>
<td>10</td>
<td>PAM-4</td>
</tr>
<tr>
<td>17555.24</td>
<td>10097.78</td>
<td>1.55</td>
<td>1.74</td>
<td>5048.89</td>
<td>28</td>
<td>4</td>
<td>10</td>
<td>PAM-4</td>
</tr>
<tr>
<td>24950.75</td>
<td>17290.00</td>
<td>1.44</td>
<td>1.44</td>
<td>8645.00</td>
<td>24</td>
<td>0</td>
<td>10</td>
<td>PAM-4</td>
</tr>
<tr>
<td>30727.91</td>
<td>16261.68</td>
<td>1.77</td>
<td>1.89</td>
<td>8130.84</td>
<td>24</td>
<td>2</td>
<td>10</td>
<td>PAM-4</td>
</tr>
<tr>
<td>36785.11</td>
<td>16888.89</td>
<td>1.94</td>
<td>2.18</td>
<td>8444.44</td>
<td>24</td>
<td>4</td>
<td>10</td>
<td>PAM-5</td>
</tr>
<tr>
<td>17212.31</td>
<td>13210.00</td>
<td>1.30</td>
<td>1.30</td>
<td>6605.00</td>
<td>28 ADVD</td>
<td>0</td>
<td>10</td>
<td>PAM-3</td>
</tr>
<tr>
<td>22044.24</td>
<td>13626.17</td>
<td>1.51</td>
<td>1.62</td>
<td>6813.08</td>
<td>28 ADVD</td>
<td>2</td>
<td>10</td>
<td>PAM-4</td>
</tr>
<tr>
<td>27147.01</td>
<td>13742.22</td>
<td>1.76</td>
<td>1.98</td>
<td>6871.11</td>
<td>28 ADVD</td>
<td>4</td>
<td>10</td>
<td>PAM-4</td>
</tr>
</tbody>
</table>

(1) Channel bandwidth = 0.5 * (Maximum signaling rate)

(2) Info bits/baud/dim adjusted for coding gain

Maximum achievable lane rate for each coding gain that yields 1 bit/baud

<table>
<thead>
<tr>
<th>Maximum Lane rate Mb/s</th>
<th>Maximum signaling rate Mbaud</th>
<th>Info bits/baud/dim</th>
<th>Modulated Info bits/baud/dim</th>
<th>Channel bandwidth MHz</th>
<th>Copper Gauge AWG</th>
<th>Code gain dB</th>
<th>Length meters</th>
<th>Signaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>10439.00</td>
<td>10439.00</td>
<td>1.00</td>
<td>1.00</td>
<td>5219.50</td>
<td>28</td>
<td>0</td>
<td>10</td>
<td>PAM-2/NRZ</td>
</tr>
<tr>
<td>12630.13</td>
<td>13580.00</td>
<td>0.93</td>
<td>1.00</td>
<td>6790.00</td>
<td>28</td>
<td>2</td>
<td>10</td>
<td>PAM-2/NRZ</td>
</tr>
<tr>
<td>14857.53</td>
<td>16690.00</td>
<td>0.89</td>
<td>1.00</td>
<td>8345.00</td>
<td>28</td>
<td>4</td>
<td>10</td>
<td>PAM-2/NRZ</td>
</tr>
<tr>
<td>21639.98</td>
<td>21639.98</td>
<td>1.00</td>
<td>1.00</td>
<td>10819.99</td>
<td>24</td>
<td>0</td>
<td>10</td>
<td>PAM-2/NRZ</td>
</tr>
<tr>
<td>23439.51</td>
<td>25170.00</td>
<td>0.93</td>
<td>1.00</td>
<td>12585.00</td>
<td>24</td>
<td>2</td>
<td>10</td>
<td>PAM-2/NRZ</td>
</tr>
<tr>
<td>24885.04</td>
<td>27950.00</td>
<td>0.89</td>
<td>1.00</td>
<td>13975.00</td>
<td>24</td>
<td>4</td>
<td>10</td>
<td>PAM-2/NRZ</td>
</tr>
<tr>
<td>16224.36</td>
<td>16224.36</td>
<td>1.00</td>
<td>1.00</td>
<td>8112.18</td>
<td>28 ADVD</td>
<td>0</td>
<td>10</td>
<td>PAM-2/NRZ</td>
</tr>
<tr>
<td>18748.43</td>
<td>20159.60</td>
<td>0.93</td>
<td>1.00</td>
<td>10079.80</td>
<td>28 ADVD</td>
<td>2</td>
<td>10</td>
<td>PAM-2/NRZ</td>
</tr>
<tr>
<td>21194.44</td>
<td>23813.98</td>
<td>0.89</td>
<td>1.00</td>
<td>11906.99</td>
<td>28 ADVD</td>
<td>4</td>
<td>10</td>
<td>PAM-2/NRZ</td>
</tr>
</tbody>
</table>

Source: George Zimmerman, Solarflare Communications, Chris DiMinico, MC Communications

IEEE 802.3 Higher Speed Study Group - DRAFT TUTORIAL
Conclusions

• Technical feasibility, economic feasibility, and market potential for a Higher Speed copper interconnect demonstrated.
• Up to 10 meter reach consistent with intra/inter rack application and HPC cluster distances.
• High speed study group copper interconnect objective of at least 10 meters to address intra/inter rack applications and high performance computing (HPC) interconnects.
40 Gigabit Backplane Ethernet

- IEEE 802.3ap™-2007 defines 1 and 10 Gigabit Ethernet operation over a modular platform backplane (1 m objective)
 - 1000BASE-KX (Gigabit Ethernet)
 - 10GBASE-KX4 (10 Gigabit Ethernet, 4 x 3.125 GBd)
 - 10GBASE-KR (serial 10 Gigabit Ethernet)
- Blade servers: 2nd generation backplane
 - Based on 10GBASE-KX4 architecture...
 - ...but satisfy 10GBASE-KR channel requirements
 - 40 Gb/s capability inherent
- “40GBASE-KR4” leveraged from 10GBASE-KR standard

Summary

• Bandwidth requirements are growing for all applications in the Ethernet EcoSystem
• The future bandwidth needs of Networking and Computing / Server are diverging
• The project targets the next generation of Ethernet with two rates