MAC Service Interface

Glen Kramer, Teknovus, Inc.
glen.kramer@teknovus.com

August 11, 2008

Two problems identified

1. Ambiguity of rules when state
diagrams are combined with
Pascal

2. MAC Clients need to resort to
“magic” to find out when a
MAC_ DATA.request can be
generated or whether it
succeeded

August 11, 2008

BEGIN

¥

y

WAIT_FOR_TRANSMIT

MA_DATA.request(

destination_address,
source_address,
mac_service_data_unit,
frame_check_sequence)

GENERATE_TRANSMIT_FRAME

TransmitFrame(

destination_address,

source_address,
lengthOrType,
data,

UCT

frame_check_sequence,
fcsPresent): TransmitStatus /

Problem 1: Ambiguity of rules when
state diagrams are
combined with Pascal

August 11, 2008

Combining State Diagrams and Pascal

o 1.2.1: State transitions and sending and receiving of messages
occur instantaneously. When a state is entered and the condition to
leave that state is not immediately fulfilled, the state executes
continuously, sending the messages and executing the actions
contained in the state in a continuous manner.

« 21.5.1 (extensions to 1.2.1): The actions inside a state block
execute instantaneously. Actions inside state blocks are atomic (i.e.,
uninterruptible). After performing all the actions listed in a state block
one time, the state block then continuously evaluates its exit
conditions until one is satisfied, at which point control passes
through a transition arrow to the next block. While the state awaits
fulfillment of one of its exit conditions, the actions inside do not
Implicitly repeat.

e 4.2.8: The TransmitFrame operation is synchronous. Its duration is
the entire attempt to transmit the frame; when the operation
completes, transmission has either succeeded or failed, as indicated
by the TransmitStatus status code.

August 11, 2008 4

Need to clarify the conventions

If a state calls TransmitFrame() function, should 21.5.1 or 4.2.8 take
precedence?

If 4.2.8 takes precedence, then, the state machine will remain in the
state until TransmitFunction() returned, even if the exit condition is
satisfied immediately

— This is analogous to a serial execution in any single-threaded (single-
stack) finite automata

If 21.5.1 takes precedence, then calling TransmitFrame() function
will be an instantaneous event and the execution will immediately
proceed with the state code that follows this function call.

— This is analogous to a multi-threaded model, where a call to

TransmitFrame() simply spawns another thread (process) which
executes asynchronously from the parent process.

Both approaches are justified. We need to make a choice and
document it.

August 11, 2008

If 4.2.8 takes precedence...

e EXxisting state diagram
In Figure 4-6 assumes
4.2.8 takes
precedence.

August 11, 2008

BEGIN

I

WAIT_FOR_TRANSMIT

MA_DATA. request(
destination_address,
source_address,
mac_service_data_unit,
frame_check_sequence)

h 4

GENERATE_TRANSMIT_FRAME

TransmitFrame(
destination_address,
source_address,
lengthOrType,
data,

frame_check_sequence,
fcsPresent): TransmitStatus

UCT

If 21.5.1 takes precedence...

e ...then, the transition from the
state should wait for a
condition.

 Few ways to specify the
condition:

1. Simply describe it in a note

2. Add a boolean
TransmitFrameCompleted

3. Walit for specific value(s) of
TransmitStatus

August 11, 2008

BEGIN

'

WAIT_FOR_TRANSMIT

MA_DATA.request(
destination_address,
source _address,
mac_service data_unit,
frame_check sequence)

Y

GENERATE_TRANSMIT_FRAME

TransmitFrame(
destination_address,
source_address,
lengthOrType,
data,
frame_check sequence,
fcsPresent): TransmitStatus

<TransmitFrame function
has completed>

Option 1. Add a note

Simply describe it in a note

“Transition from state GENERATE_TRANSIT _FRAME
occurs immediately upon completion of TransmitFrame()
function.”

August 11, 2008

Option 2: Add a new Boolean

1. Add a boolean
TransmitFrameCompleted

TransmitFrameCompleted
This boolean is set to false
Immediately after
TransmitFrame is called
and Is set to true when
TransmitFrame function
completes.

TYPE: Boolean
DEFAULT: false

August 11, 2008

BEGIN

Y

WAIT_FOR_TRANSMIT

MA_DATA.request(
destination_address,
source_address,
mac_service data_unit,
frame_check_sequence)

Y

GENERATE_TRANSMIT_FRAME

TransmitFrame(
destination_address,
source_address,
lengthOrType,
data,
frame_check sequence,
fcsPresent): TransmitStatus

TransmitFrameComplete = true
9

Option 3: Wait for a specific TransmitStatus

Wait for specific value(s) of TransmitStatus
— With this option, we need to specify what value |
the TransmitStatus variable has before BEGIN
TransmitFrame completes (it should not hold
the status of the previous TransmitFrame) ¢

WAIT_FOR_TRANSMIT

Some changes needed to Pascal:

TransmitStatus = (transmitlnProgress, MA_DATA.request(

-] destination_address,
transmitDisabled, transmitOK, source_address,
excessiveCollisionError, lateCollisionErrorStatus); mac_service_data_unit,

frame_check _sequence)
function TransmitFrame (y
GENERATE_TRANSMIT_FRAME
begin TransmitFrame(
TransmitFrame := transmitInProgress destination_address,
if transmitEnabled then source_address,

beqi lengthOrType,

egin . data,

TransmitDataEncap; frame_check_sequence,
TransmitFrame := TransmitLinkMgmt fcsPresent): TransmitStatus
end

else TransmitFrame := transmitDisabled

end; {TransmltFrame} TransmitStatus != transmitinProgress
August 11, 2008 10

Problem 2: MAC Clients doesn’t know
when a MAC_DATA.request

can be generated or
whether it succeeded

August 11, 2008

11

Three-legged MAC Service Interface

MAC A A

Client MA_DATA.request(MA_DATA.indication(MA_DATA.indication(
destination_address, transmission_status) ggﬁtr'c":t'a%'h—féggress’
source_address, . mac_service_data_unit,
mac_service_data_unit, frame_check_sequence,
frame_check_sequence) reception_status)

—

Media Access Control

Flgure 2-1 variables * A A

carrierSense

functions &
TransmitBit procedures

ReceiveDataValid ReceiveBit

CollisionDetect Wait

transmitting

PHY

e To let the MAC client know when frame transmission

ended, another indication can be added to the MAC
Service Interface.

August 11, 2008

MAC Client Transmit Interface

* Modification to Figure 4-6 —
MAC Client transmit
Interface state diagram.

o (This example assumes
option 3 is selected, but this
IS not necessary)

August 11, 2008

BEGIN l

.

WAIT_FOR_TRANSMIT

MA_DATA.request(
destination_address,
source_address,
mac_service_data_unit,
frame_check_sequence)

Y

GENERATE_TRANSMIT_FRAME

TransmitFrame(
destination_address,
source_address,
lengthOrType,
data,
frame_check_sequence,
fcsPresent): TransmitStatus

lTransmitStatus I= transmitInProgress

TRANSMISSION_COMPLETED

MA_DATA.indication(TransmitStatus)

ucTt

13

BEGIM

MAC Client: PAUSE R

pause_timerDone <= frue

fransmission_in_progress < false

TO pace Itself’ a MAC transmitEnabled = false
client after iSSUing HA}TTX fransmitEnabled = true
MA_DATA request(..) fransmission_in_progress <= false

. transmitEnablad = true
would wait for | |
MA_DATA.indication(e

Transm |tStatUS) fransmission_in_progress — false

pause_timerDone = FALSE * pause_timerDong = true
Ma_CONTROL request(.

reserved_mullicast_address, o
pause_command, ' TRANSMIT READY

n_quanta_tx)

pause_timerDone = false

Example shown for

. pause_timerDone = trug * pause_timerDone = true *
PAUSE O pe ration MA_CONTROL request(MCF:Ma_DATA.request(
resenved_multicast_address, destination_address,
pause_command, source_address

Transmit state diagram Mo ahaci-aeqnes)
(F | g u re 3 1 B = 1) 9 !MA_Crgsh,lerigl__ﬁ?tl-i?g&_&dd [28s,

pause_cammand,

n_quanta_tx)
v v v
SEND CONTROL FRAME SEMND DATA FRAME
transmission_in_progress < frue transmission_in_progress < frue

MACMA_DATA request(. »
= .) MAC:MA_DATA requesi|
resenved_mulicast_address, desiination address.

phys_Address, _ source_address, ,
pause_mac_service_data_unit, mac_service_data_unit,
frame_check_sequence) frame_check_sequence)

August 11, 2008

MAC:MA_DATA.indication(TransmitStatus) MAC:MA_DATA.indication(TransmitStatus)

MAC Client: OAM

(NN]
m
4]
=

« Example shown for OAM
Multiplexer state diagram WATT_FOR_TX
(Figure 57-7) =

CTL:OAMIR ICTL:OAMIR

([MCFMADR * local_mux_aclion=FWD }
+ LEF-OAMIR)

L 4

CHECK_PHY+LINK

lzzal_unidirectional=TRUE
* local_link_status=FAIL

local_unidirectional=FALSE
+ lozal_link_status=0K

h 4 h
T¥_FRAME

Ganerate MAC:MADR

MAC:MA_DATA.indication(TransmitStatus)

August 11, 2008 15

