
August 11, 2008 1

MAC Service Interface

Glen Kramer, Teknovus, Inc.
glen.kramer@teknovus.com

August 11, 2008 2

Two problems identified

1. Ambiguity of rules when state
diagrams are combined with
Pascal

2. MAC Clients need to resort to
“magic” to find out when a
MAC_DATA.request can be
generated or whether it
succeeded

BEGIN

GENERATE_TRANSMIT_FRAME

TransmitFrame(
 destination_address,
 source_address,
 lengthOrType,
 data,
 frame_check_sequence,
 fcsPresent): TransmitStatus

WAIT_FOR_TRANSMIT

MA_DATA.request(
 destination_address,
 source_address,
 mac_service_data_unit,
 frame_check_sequence)

UCT

August 11, 2008 3

Problem 1: Ambiguity of rules when
state diagrams are
combined with Pascal

August 11, 2008 4

Combining State Diagrams and Pascal
• 1.2.1: State transitions and sending and receiving of messages

occur instantaneously. When a state is entered and the condition to
leave that state is not immediately fulfilled, the state executes
continuously, sending the messages and executing the actions
contained in the state in a continuous manner.

• 21.5.1 (extensions to 1.2.1): The actions inside a state block
execute instantaneously. Actions inside state blocks are atomic (i.e.,
uninterruptible). After performing all the actions listed in a state block
one time, the state block then continuously evaluates its exit
conditions until one is satisfied, at which point control passes
through a transition arrow to the next block. While the state awaits
fulfillment of one of its exit conditions, the actions inside do not
implicitly repeat.

• 4.2.8: The TransmitFrame operation is synchronous. Its duration is
the entire attempt to transmit the frame; when the operation
completes, transmission has either succeeded or failed, as indicated
by the TransmitStatus status code.

August 11, 2008 5

Need to clarify the conventions
• If a state calls TransmitFrame() function, should 21.5.1 or 4.2.8 take

precedence?

• If 4.2.8 takes precedence, then, the state machine will remain in the
state until TransmitFunction() returned, even if the exit condition is
satisfied immediately
– This is analogous to a serial execution in any single-threaded (single-

stack) finite automata

• If 21.5.1 takes precedence, then calling TransmitFrame() function
will be an instantaneous event and the execution will immediately
proceed with the state code that follows this function call.
– This is analogous to a multi-threaded model, where a call to

TransmitFrame() simply spawns another thread (process) which
executes asynchronously from the parent process.

• Both approaches are justified. We need to make a choice and
document it.

August 11, 2008 6

If 4.2.8 takes precedence…

• Existing state diagram
in Figure 4-6 assumes
4.2.8 takes
precedence.

August 11, 2008 7

If 21.5.1 takes precedence…

• … then, the transition from the
state should wait for a
condition.

• Few ways to specify the
condition:

1. Simply describe it in a note

2. Add a boolean
TransmitFrameCompleted

3. Wait for specific value(s) of
TransmitStatus

August 11, 2008 8

Option 1: Add a note

Simply describe it in a note

“Transition from state GENERATE_TRANSIT_FRAME
occurs immediately upon completion of TransmitFrame()
function.”

August 11, 2008 9

Option 2: Add a new Boolean

1. Add a boolean
TransmitFrameCompleted

TransmitFrameCompleted
This boolean is set to false
immediately after
TransmitFrame is called
and is set to true when
TransmitFrame function
completes.
TYPE: Boolean
DEFAULT: false

BEGIN

GENERATE_TRANSMIT_FRAME

TransmitFrame(
 destination_address,
 source_address,
 lengthOrType,
 data,
 frame_check_sequence,
 fcsPresent): TransmitStatus

WAIT_FOR_TRANSMIT

MA_DATA.request(
 destination_address,
 source_address,
 mac_service_data_unit,
 frame_check_sequence)

TransmitFrameComplete = true

August 11, 2008 10

Option 3: Wait for a specific TransmitStatus
• Wait for specific value(s) of TransmitStatus

– With this option, we need to specify what value
the TransmitStatus variable has before
TransmitFrame completes (it should not hold
the status of the previous TransmitFrame)

• Some changes needed to Pascal:

• TransmitStatus = (transmitInProgress,
transmitDisabled, transmitOK,
excessiveCollisionError, lateCollisionErrorStatus);

• function TransmitFrame (
…
begin

TransmitFrame := transmitInProgress
if transmitEnabled then

begin
TransmitDataEncap;
TransmitFrame := TransmitLinkMgmt

end
else TransmitFrame := transmitDisabled

end; {TransmitFrame}

BEGIN

GENERATE_TRANSMIT_FRAME

TransmitFrame(
 destination_address,
 source_address,
 lengthOrType,
 data,
 frame_check_sequence,
 fcsPresent): TransmitStatus

WAIT_FOR_TRANSMIT

MA_DATA.request(
 destination_address,
 source_address,
 mac_service_data_unit,
 frame_check_sequence)

TransmitStatus != transmitInProgress

August 11, 2008 11

Problem 2: MAC Clients doesn’t know
when a MAC_DATA.request
can be generated or
whether it succeeded

August 11, 2008 12

Three-legged MAC Service Interface

• To let the MAC client know when frame transmission
ended, another indication can be added to the MAC
Service Interface.

Figure 2-1

August 11, 2008 13

MAC Client Transmit Interface
• Modification to Figure 4-6 –

MAC Client transmit
interface state diagram.

• (This example assumes
option 3 is selected, but this
is not necessary)

BEGIN

GENERATE_TRANSMIT_FRAME

TransmitFrame(
 destination_address,
 source_address,
 lengthOrType,
 data,
 frame_check_sequence,
 fcsPresent): TransmitStatus

WAIT_FOR_TRANSMIT

MA_DATA.request(
 destination_address,
 source_address,
 mac_service_data_unit,
 frame_check_sequence)

TransmitStatus != transmitInProgress

TRANSMISSION_COMPLETED

MA_DATA.indication(TransmitStatus)

UCT

August 11, 2008 14

• To pace itself, a MAC
client after issuing
MA_DATA.request(…)
would wait for
MA_DATA.indication(
TransmitStatus)

• Example shown for
PAUSE Operation
Transmit state diagram
(Figure 31B-1)

MAC:MA_DATA.indication(TransmitStatus) MAC:MA_DATA.indication(TransmitStatus)

MAC Client: PAUSE

August 11, 2008 15

• Example shown for OAM
Multiplexer state diagram
(Figure 57-7)

MAC Client: OAM

MAC:MA_DATA.indication(TransmitStatus)

