## **Application Liability**

#### for extended channel topologies

Paul Kolesar IEEE 802.3 FO Connector Loss ad hoc March 14, 2007

# The Situation

- 3N815 WD for ISO/IEC 24764: Information technology -Generic cabling for Data Centre premises, Annex C
  - Table C.1 attempts to advise users on the trade-off between connection + splice loss and length, allowing up to 6.1 dB of loss for laser applications
  - Table C.2 tabulates maximum allowed loss for up to 10 connections and 10 splices in a link, assuming all are simultaneously at worst case
    - This approach effectively allows high-loss components to be masked by average components
    - Ex:  $8 \times 0.75 \, dB = 6.0 \, dB = 7 \times 0.5 \, dB + 1 \times 2.5 \, dB$

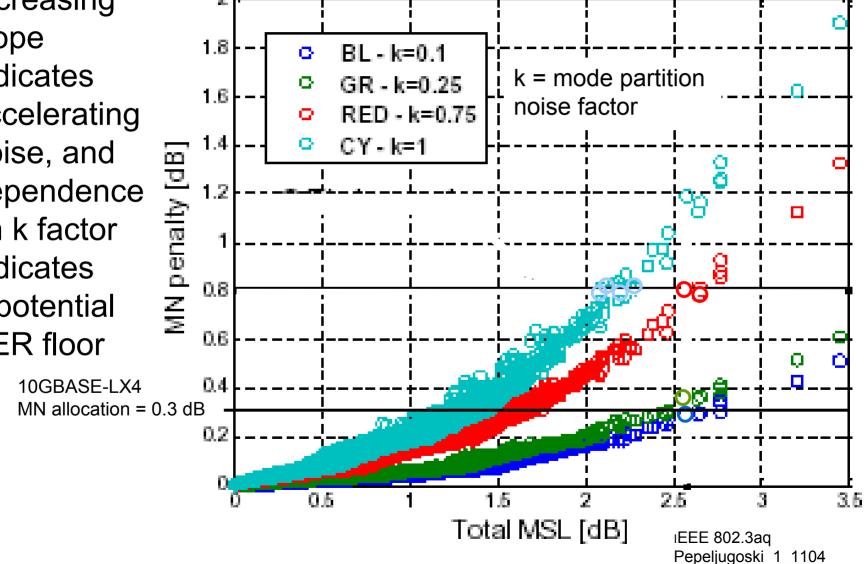
8 at maximum allow 7 average to mask 1 high Note: ISO ad hoc agreed to delete Table C.2

#### Table C.1

Table C. 1 – Maximum channel attenuation allocated to connecting hardware

|                   |                                    | Channel length<br>m                                       |       |       |       |       |       |      |      |      |
|-------------------|------------------------------------|-----------------------------------------------------------|-------|-------|-------|-------|-------|------|------|------|
|                   |                                    | 25                                                        | 50    | 75    | 100   | 250   | 500   | 750  | 1000 | 2000 |
| Application       | OF cable<br>Category and<br>design | Total connecting hardware attenuation <sup>1)</sup><br>dB |       |       |       |       |       |      |      |      |
| 10BASE-FL/FB      | OM1 62,5/125                       | 12,40                                                     | 12,30 | 12,20 | 12,15 | 11,60 | 10,75 | 9,85 | 9,00 | 5,50 |
|                   | OM2 50/125                         | 6,70                                                      | 6,60  | 6,50  | 6,45  | 5,90  | 5,05  | 4,15 | 3,30 | -    |
|                   | OM3                                | 6,70                                                      | 6,60  | 6,50  | 6,45  | 5,90  | 5,05  | 4,15 | 3,30 | -    |
| 100BASE-FX        | OM1 62,5/125                       | 10,95                                                     | 10,90 | 10,85 | 10,85 | 10,60 | 10,25 | 9,85 | 9,50 | 8,00 |
|                   | OM2 50/125                         | 5,95                                                      | 5,90  | 5,85  | 5,85  | 5,60  | 5,25  | 4,85 | 4,50 | 3,0  |
|                   | OM3                                | 5,95                                                      | 5,90  | 5,85  | 5,85  | 5,60  | 5,25  | 4,85 | 4,50 | 3,0  |
| 1000BASE-SX       | OM1 62,5/125                       | 6,05                                                      | 5,90  | 5,65  | 5,40  | 2,70  | -     | -    | -    | -    |
|                   | OM2 50/125                         | 5,90                                                      | 5,80  | 5,70  | 5,60  | 4,70  | 2,45  | -    | -    | -    |
|                   | OM3                                | 6,05                                                      | 5,95  | 5.90  | 5,80  | 5,20  | 4,00  | 2,45 | -    | -    |
| 1000BASE-LX       | OM1 62,5/125                       | 5,80                                                      | 5,75  | 5,70  | 5,65  | 5,10  | 3,55  | 1,05 | -    | -    |
|                   | OM2 50/125                         | 5,30                                                      | 5,25  | 5,20  | 5,10  | 4,40  | 2,15  | -    | -    | -    |
|                   | OM3                                | 5,30                                                      | 5,25  | 5,20  | 5,10  | 4,40  | 2,15  | -    | -    | -    |
| 10GBASE-<br>SR/SW | OM1 62,5/125                       | 4,50                                                      | -     | -     | -     | -     | -     | -    | -    | -    |
|                   | OM2 50/125                         | 5,85                                                      | 5,00  | 3,50  | 0,90  | -     | -     | -    | -    | -    |
|                   | OM3                                | 6,10                                                      | 6,00  | 5,80  | 5,60  | 3,50  | -     | -    | -    | -    |
| 10GBASE-LX4       | OM1 62,5/125                       | 5,90                                                      | 5,85  | 5,70  | 5,55  | 3,45  | -     | -    | -    | -    |
|                   | OM2 50/125                         | 5,90                                                      | 5,85  | 5,70  | 5,55  | 3,45  | -     | -    | -    | -    |
|                   | OM3                                | 5,90                                                      | 5,85  | 5,70  | 5,55  | 3,45  | -     | -    | -    | -    |

 $^{\scriptscriptstyle 1)}$  The figures are rounded down to two decimal places.


# The Situation (continued)

- IEEE 802.3 allocates 1.5 dB for MM connection + splice loss
  - Link modeling of Modal Noise penalty assumes adherence
  - Modal Noise depends on amount of mode selective loss as shown in the next slide
  - The loss of connections and splices is mode selective
  - The model used multiple concatenated connections, not a lumped single MSL
  - Modal Noise allocation also impacts Cross-Product penalty, Pcross, in link model

## Modal Noise vs Total Connection Loss

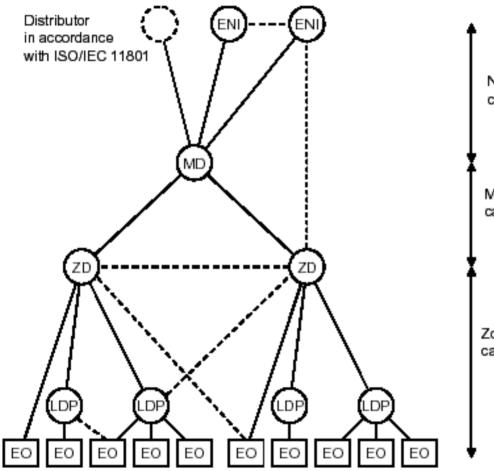
50µm, 1300nm

Increasing slope 1.8O, indicates Q, 1.6 accelerating Q 1.4Q, noise, and MN penalty [dB] dependence 1.2on k factor indicates 0.8a potential 0.6**BER** floor 0.410GBASE-LX4 MN allocation = 0.3 dB0.2



## Observations & Recommendation made to ISO, March 2007

- Advising users to exceed the loss allocation without a commensurate MN allocation increase incurs liability that the link will fail to deliver its specified BER
  - The correct MN adjustment depends on the launch condition, operating wavelength, spectral width, k factor, core size, and connection topology of the channel
  - Table C.1 does not account for this modal noise impact
  - Table C.2 compounds the issue by allowing high-loss components that adversely affect MN by concentrating mode selective loss
- Remove liability by replacing the existing tables with a tabulation of the applications' stated values for
  - Maximum channel distance
  - Maximum total attenuation


# **ISO** Reaction

- Agreed to remove Table C.2
- Declined to remove Table C.1 or replace with suggested content
- Decided to ask IEEE for guidance via liaison letter, doc 3n822, received by IEEE 802.3 this week

# **Other Relevant Facts**

- ISO activity in early stage, preparing for first ballot
- CENELEC TC215 EN 50173-5 data center standard is approved and awaits ratification by CENELEC BT, <u>contains same tables</u>
- The cabling industry is installing complex topologies today due to pre-terminated array cabling
  - 4 connections minimum for point-to-point channels
  - 8 connections common for central x-connects

### Data Center Cabling Architecture drives complex topologies



Network access cabling subsystem

Main distribution cabling subsystem Most paths illustrated require at least 4 connections, not counting the use of array-terminated cabling that doubles that number.

Zone distribution cabling subsystem

---- optional cables

NOTE Network access cabling is also used to connect ENI to ZD.

Figure 3 - Hierarchical structure of generic cabling

# Insights

- IEEE's previous response to ISO on this subject were not well received
- Another IEEE response that provides no technical guidance may cause propagation of unwise practices
- Advice to ISO will likely also impact CENELEC content similarly (revision)
- TIA also interested in same subject, but previously declined to publish similar table