802.3 PoE Plus Maximum Power

By Derek Koonce

Support by: Chad Jones, Cisco

PoE Plus PD Current Approach

- Limiting component of the whole systems
 - Wire already in place
 - Connectors already in place
- Non-limiting components
 - Magenetics designed with new Plus device
 - Limits by cost and performance

PoE Plus - the MAXIMUM

- Fusing current 24 AWG wire
 - Automatic Electric Company; Chicago, IL
 - $I = K * d^{3/2}$
 - K=10,244 for Cu
 - d=0.0201" for 24 AWG
 - 29.2 Amperes

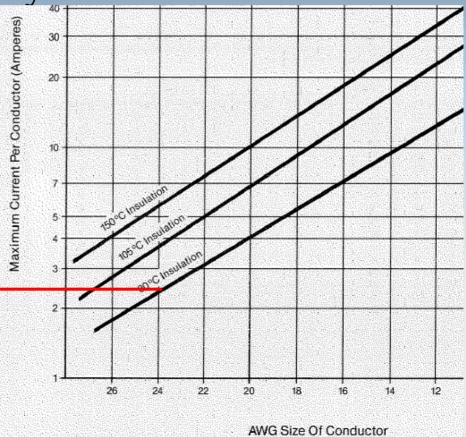
Clearly in excess of comfort for people, but establishes a maximum current.

PoE Plus Current based on Stds

Two standards approach

- First approach
 - MIL-W-5088K, Amendment 1, 21 JAN 1986
 - Now listed as SAE AS50881
 - National Electric Code
- Second approach
 - NASA Technical Memorandum 102179

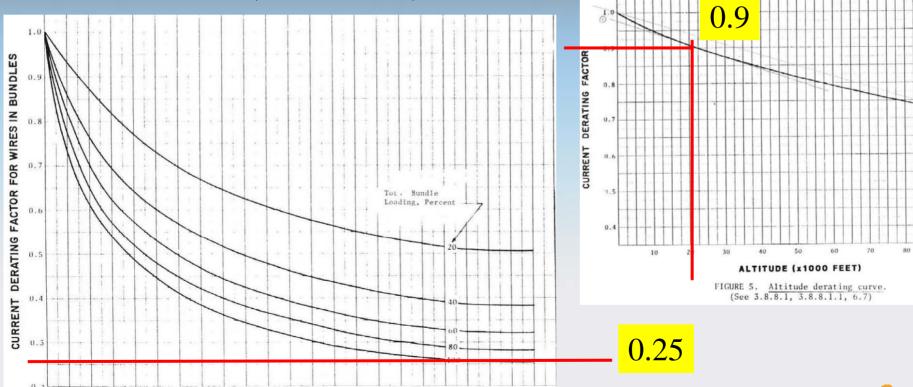
PoE Plus - MIL & NEC Standards


Current capability based on National

Electric Code

2.5 A

- 25 °C


- 60 Hz

PoE Plus - MIL & NEC (cont.)

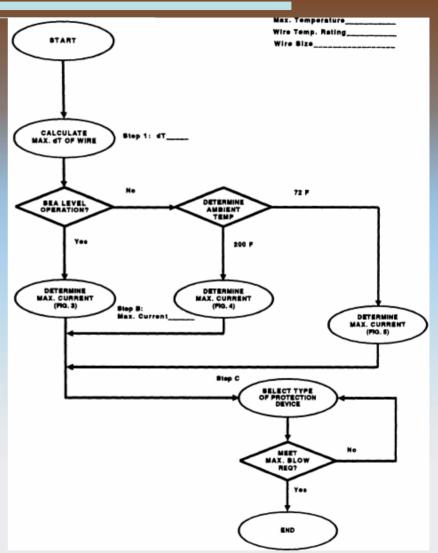
• Now derate for wire count in bundle & altitude (20 k-feet)

NUMBER OF WIRES IN BUNDLE
FIGURE 4. Bundle derating curves.
(See 3.8.8.1, 3.8.8.1.1, 6.7)

PoE Plus - MIL & NEC (cont.)

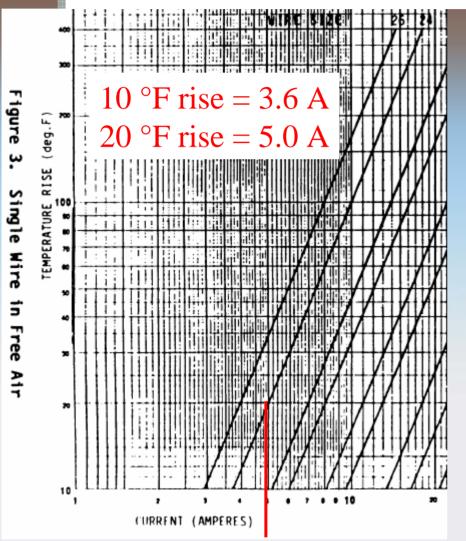
- Current for 24 AWG = 2.5 A
- Derate for 41 wires in bundle at 100% loading = 0.25
- Derate for 20,000 feet = 0.9

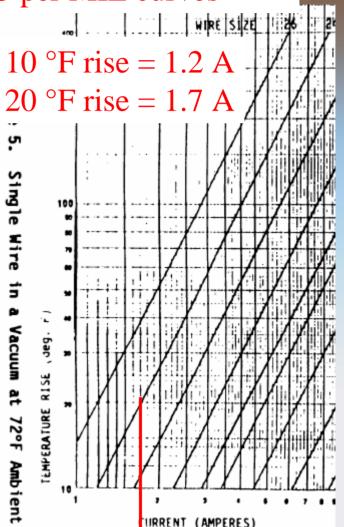
• Result: 2.5A * 0.25 * 0.9 = 0.56 A


PoE Plus Current based on NASA

- NASA Technical Memorandum 102179, June 1991
 - Selection of Wires and Circuit Protective Devices for STS
 Orbiter Vehicle Payload Electrical Circuits
 - ... systematic approach to the process of selecting proper wire size and circuit protection for generic spacecraft.
 - ... limited to two ambient pressures: 14.7 psi and 1 x 10-6
 TORR
 - ... two temperature levels: 70 °F and 200 °F
 - graphs cover stranded, soft-drawn, nickel-plated copper wire in sizes #1/0 AWG to #26 AWG
 - Final selection requires bundle derating per MIL-W-5088 (K)

PoE Plus Current - NASA (cont.)


- Use NASA charts to select current
- Derate per MIL curve



PoE Plus Current - NASA (cont.)

Pick choice and then derate 0.25 per MIL curves

PoE Plus Resulting Power

		(4 pairs)
<u>Method</u>	Current / wire	<u>Power @ 51V</u>
MIL / NEC Stds	0.56 A	114 W
NASA (10°F, vacuum)	0.3 A	61 W
NASA (20°F, vacuum)	0.43 A	88 W

PoE Plus Current based on Cable-PD Power

Point past which power dissipated in cable exceeds power delivered to the load occurs when $P_{PD} = P_{Cable}$

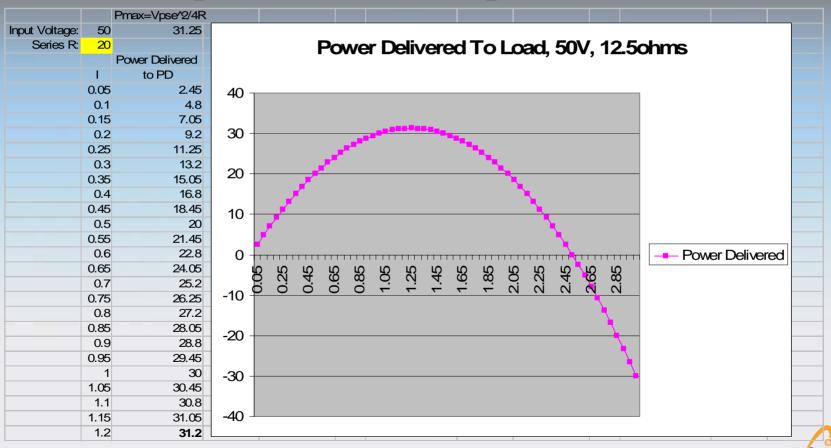
- $I^{2}R = V_{PSE}I I^{2}R$
- $V_{PSE}*I = 2(I^2*R)$

$$I_{Peak} = V_{PSE}/2R$$

PoE Plus Current Cable-PD (cont.)

Calculating Max Power Delivered to the Load

• Know I, finding I2R is simple:


$$Pmax = (V_{PSE})^2/4R$$

- Example:
 - Assuming 50V at PSE and 12.5ohm cable loss:
 - $-I_{Peak} = 50V/2*12.5ohm = 2A$
 - Pmax = 50 V * 50 V / (4 * 12.5 ohm) = 50 W

PoE Plus Current Cable-PD (cont.)

Spreadsheet Example

Discussion

