XIXIA

Acheiving Maximum Power for PoE Plus

Steve Robbins

XIXIA

Acknowledgements

Thanks to:

- Joe DeNicholas, National Semiconductor -Hank Hinrichs, Pulse Engineering

Introduction

- Presentation Objectives
- Show why ACB and BWD are needed
- Show technical feasibility
- Provide rough estimate of relative costs
- Acronyms and Abreviations
$-\mathrm{ACB}=$ Active Current Balance
- BWD = Broken-Wire Detection
$-2 \mathrm{P}=2$-Pair wiring system
$-4 \mathrm{P}=4$-Pair wiring system

Assumptions

The following assumptions were used througout this document:

AsSumption	Justification
The max current imbalance that can be tolerated is 8mA	Previous work done by Hinrichs and Ellsworth.
The max load current is 400 mA per wire	Probably most extreme case.
4P wiring is used. 4P is not composed of two independant 2P systems.	This seems to be the most favored architecture at this time.

XIXIA

Why ACB is Needed

Transformer bias must be limited to approx 8mA, otherwise loss of inductance affects signal integrity.

Connectors: $R_{C}=0, \Delta R_{C}=0.05 \Omega$ (Annex 33E)
Transformers: $R_{T}=0.5 \Omega, \Delta R_{T}=0.03 \Omega$ (Hienrichs)
WIre: $R_{W}=0.42 \Omega(5 \mathrm{~m}), \Delta R_{W}=0.015 R_{W}$ (Annex 33E)

$$
\frac{i_{2}-i_{1}}{I_{L}}=\frac{\Delta R_{B}+2 \Delta R_{T}+\Delta R_{W}+\Delta R_{C}}{R_{B}+2 R_{T}+R_{W}+R_{C}}=\frac{\Delta R_{B}+0.1163}{R_{B}+1.42}
$$

ANALYSIS

- Absolute worst case analysis of a single 24AWG pair with ballast resistors.
-Same method as 802.3af Annex 33E
- Transformer winding resistances added.
- Extended to 400mA per wire.
-Results verified with SPICE

RESULTS

-With no ballast ($R_{B}=0$), 8 mA imbalance occurs when $I_{L}=98 \mathrm{~mA}$. (This is why Annex 33E says you "must" have ballast resistors.
Recommends $6.65 \Omega, 1 \%, 0.25 \mathrm{~W}$.
-To acheive 8 mA balance at $I_{L}=800 \mathrm{~mA}$, the required ballast resistors are:

- $20.5 \Omega, 0.5 \%, 3.5 \mathrm{~W}$ or
- $11.3 \Omega, 0.1 \%, 2 \mathrm{~W}$

Why BWD is Needed

2P Sytem: Power dissipation in a twisted pair doubles when one wire breaks.

$$
P_{D}=\frac{I^{2} R}{2}
$$

$P_{D}=I^{2} R$

4P Sytem: Assuming PD does not use separate converters.

No. of Broken Wires	Power Dissipation (relative to no broken wires)
1	133%
2	200%
3	400%

-Worst-case analysis becomes difficult in a 4P system: How many broken wires are a reasonable worst case?
-Can't use loss-of-link to detect breaks, because PD may not have Phy.

IXIA

Summary: Acheiving Max Power

Goal: Increase $\mathrm{I}_{\mathrm{CUT}}$ to the max safe capacity of CAT-5 cable.

Limiting Factors	Proposed Solutions
Current imbalances within a twisted-pair degrade transformer performance.	Add circuitry to actively balance the currents within pairs to better than $\pm 8 \mathrm{~mA}$.
Cost/Complexity of 4-Pair power distribution.	Active current balancing between pairs. PD can use diode-ORing, PSE only needs one MOSFET per port.
Wire heating. Worst-case analysis becomes much harder when broken wires or bent connector pins are considered.	Add circuitry to detect broken wires, and turn off power to the PD. Garentees all wires are conducting equal currents.

IXIA

Technical Feasibility

- System Block Diagram
- ACB Circuit Requirements
- Alternative ACB Topologies
- Vertical Bipolar Process
- Detecting Broken Wires
- SPICE Simulations

XIXIA

System Block Diagram

IXIA

ACB Circuit Requirements

- 4-wire balance with up to 400 mA per wire.
- Balance better than $\pm 8 \mathrm{~mA}$, with up to 250 mV difference between any two wires. (See next page for analysis.)
- Directly signals PSE controller chip to turn off power when one or more wires are broken.
- Low Cost
- No external power supplies required
- Minimal external components
- Low complexity (minimum process steps)
- Low power dissipation (small package, no heat sinks)

IXIA Worst-Case Differential Voltage

Assume ACB circuit forces equal currents on all 4 wires.

Worst-case differential resistance

$$
\begin{aligned}
& R_{\max }-R_{\min }=2 \Delta R_{T}+\Delta R_{W}+\Delta R_{C} \\
&=2(0.03)+(9.60)(0.03)+0.1=0.448 \Omega \\
& \square \\
& \text { (Table 33E.1) }
\end{aligned}
$$

Worst-case differential diode drop
Let $I_{S 1}=3.14 \mathrm{e}-7 \quad I_{S 2}=6.28 \mathrm{e}-7 T_{1}=300 \mathrm{~K} \quad T_{2}=280 \mathrm{~K} \quad I_{L}=1.6 \mathrm{~A}$

$$
\Delta V_{D}=V_{D 1}-V_{D 2}=\frac{k T_{1}}{q}\left\{\ln \left(\frac{I_{L}}{2 I_{S 1}}\right)-\frac{T_{2}}{T_{1}} \ln \left(\frac{I_{L}}{2 I_{S 2}}\right)\right\}=0.0442
$$

Worst-case differential voltage seen at current mirror inputs

$$
\Delta V_{W}=\frac{I_{L}}{4}\left(R_{\max }-R_{\min }\right)+\Delta V_{D}=\mathbf{2 2 3} \mathbf{m V}
$$

XIXIA

ACB Circuit Topologies

Problems:

-If W2,W3, or W4 breaks, current will still flow on W1. This can be detected and power shut off. But if W1 breaks, it looks like the PD has been connected. Can't tell the difference.
-Currents slightly unequal because β is finite.
"Symmetrical" Current Mirror

W1 W2

Problems:

-Twice the voltage drop means twice the power dissipation.
-External power supply required.

IXIA

ACB Topologies (continued)

True Symmetrical Current Mirror (Circuit "A")

Even if the 4 mirrors don't share the load equally, the currents on all 4 wires remains nearly equal:

$$
\begin{aligned}
& \mathrm{I}(\mathrm{~W} 1)=i_{1}+i_{2}+i_{3}+i_{4}+\left(4 i_{1} / \beta\right) \\
& \mathrm{I}(\mathrm{~W} 2)=i_{1}+i_{2}+i_{3}+i_{4}+\left(4 i_{2} / \beta\right) \\
& \mathrm{I}(\mathrm{~W} 3)=i_{1}+i_{2}+i_{3}+i_{4}+\left(4 i_{3} / \beta\right) \\
& \mathrm{I}(\mathrm{~W} 4)=i_{1}+i_{2}+i_{3}+i_{4}+\left(4 i_{4} / \beta\right)
\end{aligned}
$$

Problems:

- Increased die area. Voltage differences on the wires makes $i_{j} \neq i_{k}$. The 4 mirrors don't share the load equally, so all transistors must be larger.

XIXIA

ACB Topologies (continued)

Alternative Symmetrical

 Current Mirror (Circuit "B")(Joseph DeNicholas)

Advantages:

-All transistors share equally.
-Die size might be smaller.

Problems:
-Higher power dissipation than Circuit " A "

- Requires large β.

Beta	$\boldsymbol{P}_{\boldsymbol{D}} @ 1.6 \mathrm{~A}$
100	3.30
200	2.50
300	2.25

(Circuit A: 1.39W @ 1.6A, $R_{E}=1.5 \Omega$, independant of Beta.)

IXIA

ACB Topologies (continued)

Bipolar vs. CMOS

Similar circuits could be implemented in CMOS, but the voltage drop, and power dissipation would be much greater.

To acheive similar voltage drops with CMOS, the power MOSFETs would need to be in the linear region (not pinch off). Accurate current-balancing can't be acheived by device-matching alone: active control circuitry (opamps) would be necessary. This entails the need for external power supplies.

XIXIA Current Sharing In Circuit "A"

Worst-case differential voltage from page TBD.
-Let $R_{E}=1.5 \Omega$
-Transistors must handle 200 mA each before significant loss of gain (high injection effects).

SPICE Analysis

- Selected Circuit A because of it's lower power dissipation.
- Chose PNP model for a Low-Sat off-the-shelf transistor and modified it:
- Lowered Beta to 100 (was >300), and added 10% tol.
- Added 6\% tolerance to saturation current (equivalent to $2 \mathrm{mV} V_{B E}$ missmatch)
- Did not attempt to add parasitic transistors.
- Chose off-the-shelf diode model. (From bridge rectifier used in some PoE applications. Added 80% tol on saturation current.
- Wire resistance is max for 100 m of 24 AWG at 50 C . Added 3.5\% tolerance.

XIXIA

SPICE Model

XIXIA

SPICE Results

Monte Carlo Results. 300 runs

Vertical Bipolar Process

Equivalent Circuit

When the PNP is saturated, the parasitic NPN steals it's base current. Substrate current (normaly very small) increases dramatically.

XIXIA

Detecting Broken Wires

Broken wires \Rightarrow Saturated Transistors \Rightarrow Large Substrate Currents.
Simple circuits sense voltage drop on substrate-to-ground connections.

IXIA
 Estimation of Relative Cost

High-side ACB chip cost estimate based on comparison to off-theshelf Darlington PNP:
-Similar die size
-Similar package - but fewer pins

Ratings:
$\mathrm{I}_{\mathrm{C}(\mathrm{MAX})}=5 \mathrm{~A}$
Package: TO-220AB

- Similar process - but probably only one metal layer

Rough estimate: double the cost of this device.
Assume same for low-side ACB chip.

IXIA

Estimation of Relative Cost

Other costs:

- Magnetics. Extra pins needed for split-windings. Package can't get larger (must fit behind RJ45), so pitch must shrink. Probably will have to use staggered pitch. Cost increase approx 15% (Hinrichs).
- PSE Controller chip. Need 2 extra pins per port for broken-wire detection inputs. Might be able to reduce it to 1 pin per port. Cost increase TBD.
- Discrete componets. Extra caps to couple the split-windings. Possibly Bob Smith terminations (probably pointless).
- Approx 60% more board space needed per port, because of ACB/BWD chips.

Bottom Line:

- Cost of PoE-related circuitry in PSE roughly doubles.
- Cost of PD not impacted.

XIXIA

Questions

