DC Current Imbalance
DUE TO CONDUCTIVE AND INDUCTIVE ELEMENTS.

By Steve Ellsworth
What It is

• In a POE LAN interface, current imbalance arises due to the unequal resistance of various segments of the DC current path associated with transferring power from the PSE to the PD.

• The net effect of this current imbalance is the application of a Bias current to the interface transformers associated with the current path.
The Typical Transformer

• Ferrite Core and number of turns chosen to yield a transformer which has sufficient bandwidth to meet all IEEE 802.3 requirements. And contemporary size constraints.

• Wire gauge is 39 QPN. (Min to Nom).

• Wire cross sectional area tolerance from Min to Nom. Diameter is 6.5 %.
The Typical Cable

- 3 Meters of 24 AWG CAT 5e Cable
- 9 ohms/100 Meter
- DCR Imbalance 3.5%
Worst case conditions

• All Resistances are arranged in the circuit to yield the highest current imbalance i.e. All Minimum Resistances are in series and all Maximum Resistances are in series.

• The interconnect cable is assumed to be minimum length (3 Meters)
D.C. Current Imbalance

POE IT IS NOW:
• DC Current Imbalance at a Load Current of 350 mA is 9.2 mA.

POE AS IT IS PROPOSED:
• DC Current Imbalance at a Load Current of 850 mA is 22.5 mA.
Negative Effects of current imbalance

- **REDUCTION OF INDUCTANCE:**

 The present IEEE 802.3 requirement for Inductance (OCL) is 350uH @ 8mADC Bias from 0 Degrees C to +70 Degrees C.

 For a typical interface transformer the inductance is around 400 uH under worst case Bias and temperature conditions. **With 0 ADC current imbalance.**
Negative Effects of current imbalance

The following graph shows the relationship between OCL of a typical Interface transformer and DC Bias current.

Effective Inductance vs D.C. Bias @ 0, 20, AND 70 C.
(uH vs mA)
Negative Effects of current imbalance

As it can be seen from the previous graph, the minimum transformer inductance spec. of 350 uH cannot be maintained above a 16 mA DC Bias.

As an 8mA DC Bias is an IEEE 802.3 requirement, the remaining overhead for imbalance is 8 mA.
Negative Effects of current imbalance

POE IT IS NOW:

- With a DC Current Imbalance of 9.2 mA + 8 mA
 Bias the OCL of the transformer is 325 uH.

POE AS IT IS PROPOSED:

- With a DC Current Imbalance of 22.5 mA + 8 mA
 Bias the OCL of the transformer is 156 uH.
Negative Effects of current imbalance

- **INCREASE IN WAVEFORM DROOP:**

Fig. 1 The circuit.

Fig. 2 The output waveform.

Fig.3 B H loop characteristics for unipolar and bipolar excitations.
Negative Effects of current imbalance

POE IT IS NOW:
• With a DC Current Imbalance of 9.2 mA + 8 mA Bias the Waveform Droop of the transformer is at 1000 ns is 9.9 %.

POE AS IT IS PROPOSED:
• With a DC Current Imbalance of 22.5 mA + 8 mA Bias the Waveform Droop of the transformer at 1000 ns is 15 %.
Conclusions

• The worst case current imbalance in the present POE scheme creates only a marginal problem in terms of transformer inductance (OCL) and waveform Droop.

• The proposed 850 mA load current for POE Plus will have a significant effect on the interface transformers used in today's LAN interface.