IEEE 802.3 DTE Power via MDI

Power Delivery Calculations and Proposals

Robert Leonowich Donald Stewart

January 20-21, 2000

Objective, Assumptions

- Objective: Better understand the ramifications of and make proposals regarding
 - > power and current levels
 - > one Vs two pairs for power
 - > power supply capacity/power delivery efficiency
- Power is assumed applied to one or two spare pairs
- Load is assumed to be a constant power sink of either 12, 15, 20, or 25 watts, continuous
 - > Addresses the range of limits most parties have mentioned*

* Some parties, including P. Holland ("Proposed DC Power Requirements for Power via MDI", Sept 31, 1999) have proposed addressing higher power levels

Lucent Technologies Bell Labs Innovations

Power Level Requirements (at the load)

Application	Prevalence	Max. Cont. Power, Watts
IP Telephone	High	5-12
IP Terminal Adapter	Med	?
Wireless base stations	Low	25
Web Cams	Low	?
Building, Industrial Controls	?	Sensor: 0.5 Actuator: 6.0*
Sensors, Badge Readers	Low	Proximity: 12 Swipe: 1
Wall displays/monitors	Low	?
Laptop (54-42v compatible)	Med	25

* Intermittent, not continuous.

Assumptions, Proposals

- A nominal 54 volt and, importantly, worst case 42 volt enterprise power source is proposed
 - Keep voltages <= 60 volts (CEI/IEC 950 or UL 1950)</p>
 - To stay <= 60v with tolerances, maintain 54 volts and charge emergency back-up batteries to 54 volts
 - > This maximizes battery hold-over life life before dropping to 42 v
 - > Below 42 volts, battery damage can occur
 - > We propose 42 v minimum operational source voltage
- Cable current Limits
 - Keep current per conductor < 1 amp* (conservative)</p>
 - Keep total current in 4-pair cable <= 3.3 amps**</p>
 - > We propose operational currents
 - <= 0.82 amp/conductor for power over 2 pairs
 - <= 1 amp/conductor for power over 1 pair
 - * Charles Belove, "Handbook of Modern Electronics and Electrical Engineering". This sites UL 60° C cable ratings.
 - ** FCC Data. CFR Section 68.215

Loop Resistance

- Assume Cat 3 or Cat 5 24 gage cable
- DC resistance per 100 meter loop (through two conductors) at 20° C = 18.76 ohms*
- Increase in loop resistance per $^{\circ}C = 0.393\%$
- 50° C conductor temperature is a reasonably worst case assumption, consistent with building ambient
- Temperature rises due to ~ 0.8 amp currents are small (~ 3° C) relative to the assumed worst case ambient

Temp (°C)	Loop R (ohms) (single loop)	% increase
20	18.76	0
40	20.2	7.9%
50	21.0	11.8%

Assume 21 Ohms for 100 meter loop

*ANSI/TIA/EIA-568-A, Section 10.2.4.1, DC Resistance: The resistance of any conductor, measured in accordance with ASTM D 4566, shall not exceed 9.38 ohms per 100 m (328 ft) at or corrected to a temperature of 20° C.

- One and two loops carrying power are examined
- Calculations assume 21 ohms for single pair, 10.5 ohms for two pairs (100m loop length)
- Calculations assume 54 v (nominal) and 42 v (worst case) from source ($\rm E_{s})$

Current Per Conductor Vs Loop Length

Power from Source Versus Loop Length

Power from Source Versus Loop Length

Power Disipated in Loop as % of Source Power Es = 54

Power Disipated in Loop as % of Source Power Es = 42

Voltage, Current, and Pair Proposals

- Standardize on 54 v (nominal), 42 volt (worst case) power source
- Keep current per conductor <= 0.82 amps
 Consistent with using two pairs for power
- Use two power pairs instead of one
 - > Allows <= 40 watts to DTE while staying <0.8 amps*</p>
 - Lowers the required power supply capacity, lowering costs
 - Maximum one pair can support to DTE at 100 meters: 20 watts**

• Proposal: support <=25 watts to the DTE

Large enough to encourage new applications

* At Worst Case 42v

** The 42 v worst case voltage limits the current to 0.8 amps at 100 meters

