

DTE Power via MDI: System Requirements

Arlan Anderson

November 5, 1999

Strict Requirements

A solution for DTE Powering via DTE <u>must</u> satisfy the following conditions:

- → It will meet all applicable safety standards and regulations.
- → It will meet all of the requirements of existing 802.3 Ethernet LAN standards.
- → Its operation will not degrade in any way the performance of the Ethernet data transmission.
- → It will not damage, or be damaged by, or have its operation degraded, or be degraded by, any other RJ-45 or RJ-11 interconnected equipment to which it may be incidentally connected.
- → It will not cause any anomalous behavior or change the expected operation for any connected LAN equipment (e.g. link status LED indicators).

Desirable Requirements

A DTE Powering solution <u>should</u> satisfy the following conditions:

- → It should be able to provide sufficient power to support a useful range of single IP terminal devices (e.g. IP telephones, wireless LAN base-stations, cameras, hubs, power controls, thermostats, etc.)
- → The powering topology should allow for the easy insertion of power at any point along the span.
- → The power source equipment should support a MIB for SNMP system management (including any backup power system).

Power Source Attributes

To satisfy the previous conditions the following LAN power source characteristics are proposed:

- → An isolated DC voltage source meeting all applicable worldwide regulatory safety requirements;
- → Metallic power feed on Pins 4-5, one of the idle pairs of the 10/100 BASE-T LAN loop;
- → Each loop power feed isolated to withstand ±2250 Volts DC or 1500 Volts AC for 60 sec. (IEC 60950:1991 "Hipot");
- → The power source to each loop must be independently current limited to a level to be determined above the level of the maximum rated output.
- → All protection circuitry for the loop power feed must recover automatically without any operator intervention once the fault has been removed.

Power Source Attributes (continued)

To satisfy the previous conditions the following LAN power source characteristics are proposed:

- → The loop supply must be "smart," using a discovery mechanism to insure that power is only provided to authorized terminal devices;
- → The source must provide a maintenance capability to monitor and supply power only as long as the loop connection remains valid;
- The source must limit the power to any non-authenticated terminal loads to protect against damage;
- → At the point of power insertion, appropriate terminations will be presented to the network side of the LAN connection.

Terminal Power Attributes

Given the previous system attributes and requirements the power characteristics for the terminal are:

- → A terminal, which is authorized for LAN powering, must support a unique discovery mechanism for its powering authentication;
- → A target for the absolute maximum peak power consumption at the terminal of 15 Watts;
- → A target of 10 Watts for the continuous nominal power load at the terminal;
- → At the point of power extraction, appropriate terminations will be presented to the terminal side of the LAN connection;
- Under no circumstances will the terminal source current into the loop (i.e. back feed);
- → The terminal port must meet the "Hipot" isolation requirements of IEC 60950:1991.

Rationale

- Use of a non-signal pair for powering:
 - Does not require any changes to the magnetics, and the potential for secondary effect problems;
 - → Minimizes interference into the LAN transmission signals;
 - **→** Allows for simple mid-span power insertion;
- Use of a DC Voltage source:
 - Builds on existing, mature power back-up system technology;
 - → Minimizes noise and potential data transmission interference;
 - → A DC source enables the use of integrated silicon control circuitry.

