DTE Power over MDI: Discovery process proposal

Ralph Andersson TDK Semiconductor November 10, 1999

Scenarios

 No Cable: No Cable connecting Power Source and DTE Cross Cable, No Power Supply Required • X Cable, No PSR: • X Cable, No PSR DTE off: Cross Cable, Remote DTE Powered off • X Cable, PSR: Cross Cable, Power Supply Required • Cable, No PSR: Normal Cable, No Power Supply Required Cable, No PSR, DTE off: Normal Cable, Remote DTE Powered off Normal Cable, Power Supply Required • Cable, PSR: • Loop Back: A connection between each wire of TX and RX of pair 1 2, and connection between discrete wire of pairs 3 and 4 and • Full Short: Connections between all 8 wires Partial Short: Connection between a few of the 8 wires in any ۲ combination Connection from a legacy device PSR device • Legacy: • Power Hub: Connection from a powering device to another powering device Random Plug: Randomly plugs or unplugs during operation lacksquare

Overview

Architecture:

- Transmitter on the Power Source side transmits link pulses and monitors levels of the differential levels across the TX pair
- Receiver monitors for link pulses as per usual

Startup:

- TXRX_Toggle reset
- Transmit link pulse and monitor for level
- TXRX_Toggle set
- Transmit link pulse and monitor for level

• No Cable:

TXRX_Toggle	TX differential amplitude	RX differential amplitude
0	High	N/A
1	High	N/A

• X Cable, No PSR:

TXRX_Toggle	TX differential amplitude	RX differential amplitude
0	Normal	Normal / Async
1	Normal / Async	N/A

• X Cable, No PSR, DTE Off:

TXRX_Toggle	TX differential amplitude	RX differential amplitude
0	Normal	N/A
1	Normal	N/A

• X Cable, PSR:

TXRX_Toggle	TX differential amplitude	RX differential amplitude
0	High	N/A
1	Normal	N/A

• Cable, No PSR:

TXRX_Toggle	TX differential amplitude	RX differential amplitude
0	Normal / Async	N/A
1	Normal	Normal / Async

• Cable, No PSR, DTE off:

TXRX_Toggle	TX differential amplitude	RX differential amplitude
0	Normal	N/A
1	Normal	N/A

• Cable, PSR:

TXRX_Toggle	TX differential amplitude	RX differential amplitude
0	Normal	N/A
1	High	N/A

• Loop Back:

TXRX_Toggle	TX differential amplitude	RX differential amplitude
0	Normal	Normal / Sync
1	Normal	Normal / Sync

• Full Short:

TXRX_Toggle	TX differential amplitude	RX differential amplitude
0	Low / Ref	Low / Sync
1	Low / Ref	Low / Sync

• Partial Short :

TXRX_Toggle	TX differential amplitude	RX differential amplitude
0	?	?
1	?	?

• Legacy:

Cable	TX differential amplitude	RX differential amplitude
Cross	N/A	N/A
Straight	N/A	N/A

• Power Hub:

TXRX_Toggle	TX differential amplitude	RX differential amplitude
0	Normal /Async*	Normal /Async*
1	Normal /Async*	Normal / Async*

* Not deterministic due to asynchronous switching on each side

• Random Plug:

TXRX_Toggle	TX differential amplitude	RX differential amplitude
0	Normal Startup & Operation	Normal Startup & Operation
1	Normal Startup & Operation	Normal Startup & Operation

Conclusions

- Can uniquely identify (and report via management interface) the following line conditions:
 - No Cable
 - X Cable & Straight Cable for Non PSR Devices
 - X Cable & Straight Cable for PSR Devices
 - Loop Back
 - Full Short and Partial Shorts (Line Fault)
 - Power Source to Power Source (Power Hub)
- Can Identify but can not distinguish:
 - X and nonX, with no PSR, DTE off
- Legacy to PSR Device OK
- Random Plug OK
- This can be built and bench tested now with today's silicon
- The TXRX_Toggle function can be implemented in silicon. Receive and Transmit amplitude measurement represent a minor change to silicon and can be implemented using MDIX technology
- Does not require filters to added to the powered device
- Architecture is relatively insensitive to cable attenuation differences
- Does not require changes to IEEE 802.3 section 14 or 28 to implement
 Kauai IEEE 802.3 Plenary