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1 Worst-case latency theorem

1.1 Assumptions
In order to derive mathematically a worst-case latency we will need to make cer-
tain assumptions about the network we are dealing with. Following assumptions
are set forth:

• All switches on the network are straight store-and-forward and function
as output queue switches
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• All receiving and transmitting ports are functioning independently (HW
router and full duplex)

• All traffic has the same priority.

• Processing time for packets (time between reception and start of trans-
mission of the target port) inside switches is considered to be zero.

• All packets have the same size.

• PHYs on switches have identical speed and transmit/receive single packet
in fixed amount of time of τ seconds.

• Packet source and sink are separated by N switches and each switch has
n input ports with one source connected to each port.

• Network is never congested, we will define this as sum of incoming traffic
to the switch targeted on the same output port over any period of time
n · τ does not exceed output port capacity. This should be true for each
port of each participating switch. This effectively means that no more
than n packets targeted for one output port come from all input ports
during the period of time n · τ . This assumption puts the burden of traffic
shaping on sources.

1.2 Theorem
With the assumptions set forth in section 1.1 worst-case propagation delay for
the packet from the source to the sink will be

T = (n ·N + 1) · τ (1)

1.3 Proof
Proof will consist of two parts:

1. construction of example network with delay expressed with formula 1,

2. proof from the opposite that worse propagation value is not possible

First let’s build the network with needed propagation delay. For this we will
imagine that our source of interest emitted a packet, which we refer to as marked
packet. All interfering sources on the network, i.e. all sources but the one we
measure propagation delay for, emit packets in such a fashion that they, for
each switch, all arrive and get queued for transmission just before the marked
packet (See Figure 1). This means that when marked packet arrives, there are
n− 1 packets queued waiting to be transfered.

Since there are n−1 packets in the queue, it will effectively take τ ·(n−1)+τ =
n · τ seconds for packet to reach the next switch or sink, in case if this switch
was last on the path.
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Figure 1: Worst-case switch delay scenario

Note that we can arrange topology and interfering streams is such a way
that all packets except for the marked packet will get routed off the marked
packet’s path. This allows us to re-create the same packets arrangement as
on the previous switch on the next switch without violating non-congestion
condition. Since arrangement is the same, marked packet will again find n− 1
packets waiting to be transmitted ahead of it.

Since by our assumption there are N switches between the source and the
sink and every switch produces n · τ seconds of delay, adding the time τ is
takes for marked packet to reach a first switch, we get the value for the total
propagation delay as

T = N · n · τ + τ = (N · n + 1) · τ

, which is identical to the expression 1 we’re trying to prove.
Now we shall show that given expression is the upper bound.
Let assume that this is not the case and there is a configuration which

causes greater propagation delay T̃ . This would mean that at least on one
switch marked packet found more than n− 1 packets enqueued when it arrived.
At the minimum there was n packets queued, so adding marked packet we will
get minimum n + 1 packets in the queue total.

Lets show that no congestion assumption made in section 1.1 is equivalent to
demanding that at no time any output port on switch has more than n packets
in queue.

Indeed, output port is a leaking bucket with a constant leakage rate, equal
to the link capacity. Number of queued packets can be expressed as

m(t) = m(t− n · τ)− ptx + prx (2)

,where prx is a number of packets arrived from input ports and ptx is the number
of packets transmitted to the output port. By assumption of non-congested
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network prx ≤ n.
Naturally ptx ≤ n since n is the maximum number that can be transmitted

at the maximum transmission rate.
Let’s consider a moment of time t0 when m(t0) > n for the first time. This

means that ∀t < t0,m(t) ≤ n. We can ensure that such t0 exists if we assume
than m(ts) = 0, ∀ts < n · τ , which means that initially router had no packets
queued for the time period of n · τ .

This allows us to write particularly that m(t0 − n · τ) ≤ n. This in turn
means that

ptx ≥ m(t0 − n · τ) (3)

, since at the minimum all packets queued at the time t0−n ·τ would have been
transmitted by the time t0 because there was less then n of them.

Using 2 we will write an expression for maximum value of m(t0)

max m(t0) = max(m(t0 − n · τ)− ptx + prx) (4)

Now we will re-write 3, by subtracting m(t0 − n · τ) + prx as

−prx ≤ ptx − (m(t0 − n · τ) + prx) ⇒

m(t0 − n · τ) + prx − ptx ≤ prx ⇒

max(m(t0 − n · τ)− ptx + prx) ≤ prx ≤ n

, here we used prx ≤ n (assumption of non-congested network).
Substituting to 4 we get

max m(t0) ≤ n.

Thus we get contradiction with means that such t0 does not exist and our initial
proposition that at least one of switches would have at least n+1 packets queued
contradicts with our assumptions of the network not getting congested.

Theorem is proved.

2 Generalizations

2.1 Relaxing assumption of the same size packets
In our theorem we assumed that all packets on the network have the same
size and transmission time τ . Let’s examine what happens if we relax this
requirement to say that:

• The τ is the maximum size while smaller packet sizes are permitted. We
will assume that there’s no overhead of transmitting separate packets ver-
sus a single.

Non-congestion requirement will change its meaning. Since packets have differ-
ent sizes, non-congestion requirement will mean that:
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Figure 2: Worst-case scenario for sharing period Ω > n · τ

• the sum of transmission times for incoming packets during the period of
n · τ targeted for the same output port shall not exceed n · τ .

This substitutes limit of n incoming packets as explained in section 1.1.
It is obvious that our initial worst-case example can still be used since all

packets of the maximum size still represent a valid case. This means that per-
switch worst-case delay is no less than n · τ .

Expressions 2-4 can be rewritten in terms of transmission times of packets
rather than number of packets. We will come to the conclusion that under
assumption of shaping interval being n · τ , the sum of transmission times for
packet queued at each router will not exceed n ·τ . This means that transmission
delay per hop will still be bound by n·τ and latency formula 1 will still be correct.

2.2 Other traffic shaping periods
We’ve assumed in theorem above that traffic is shaped to not exceed network
capacity on intervals of time n · τ . Lets relax this restriction and derive latency
for an arbitrary shaping time period of Ω.

Let consider a case where Ω > n · τ .
This condition allows each input port on a switch to have more than one

incoming maximum size packet back-to-back. Short of a strict proof we will
construct a worst case latency scenario for a switch based on the intuitive as-
sumption that in order to provide maximum queueing delay we need to produce
combined burst with the maximum data rate on input ports targeted to the
same output port and make sure marked packet get queued last.
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Maximum burst data rate will occur when all input ports are receiving simul-
taneously. This can be achieved by spreading total budget of incoming data size
Ω (in terms of transmission time) evenly over all incoming ports on the switch.
As illustrated on the Figure 2, this will amount to the busts with combined size
of packets Ω

n coming from the each input port.
Because of the store-and-forward nature of the switch, we can introduce

maximum queueing delay if initial packets on all bursts are maximum-sized
packets with transmission time τ . This will ensure that transmission on the
output port will be delayed by τ . Once transmission is started, it will take
exactly time Ω for output port to transmit all the incoming data including the
marked packet at the end. On the other hand marked packet will get queued
in the switch only after all burst is received on the input port, which will take
Ω
n . So marked packet will be transmitted after Ω + τ from the beginning of
the burst, but it will only get queued at the time Ω

n since the beginning of the
burst. Putting it all together we get a delay marked packet will experience on
this switch as:

δ = Ω + τ − Ω
n

= Ω(1− 1
n

) + τ

,please see Figure 2 for a graphic explanation.
To extend same speculation on the next switch on the path we ensure that

only the last portion of the burts with the size Ω
n , including marked packet, will

be routed on the output port on the marked packet’s path, while the rest of
the data is routed elsewhere. This will allow us to recreate exactly the same
scenario on the next switch and get the same expression for the per-switch delay
δ. Including the initial delay of marked packet from source to the first switch,
we get following for the total latency:

T = (Ω(1− 1
n

) + τ) ·N + τ ,Ω > n · τ. (5)

Note that on the edge Ω = n · τ formula turns into the original formula 1.
Lets inspect the case where Ω < n · τ .
This essentially means that not all input ports on a switch are allowed to have

maximum-sized packet queued up simultaneously. At least one port will have
a smaller packet or no packet at all, and total maximum size of packets will be
Ω. To ensure that output port doesn’t start forwarding packets from incoming
burst before marked packet is received, we will align all incoming packets’ ends
with the end of the marked packet. Now if we arrange that marked packet gets
queued last, we will get queuing delay of exactly Ω (see Figure 3).

To obtain an exact worst-case proof in this case one can rewrite expressions
2-4 in terms of transmission times versus packets count and show that with
shaping period Ω, per-switch delay worse than Ω is not possible.

If we again arrange that on the next switch all packets except for the marked
packet are routed off the marked packet’s path, we can extend same speculation
for every following switch, which puts total latency at:

T = Ω ·N + τ ,Ω < n · τ (6)
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Figure 3: Worst-case scenario for sharing period Ω < n · τ

Now we can combine all together formulas 5, 6 and original formula 1 (for
the case Ω = n · τ) we get:

T = δ ·N + τ, δ =
{

Ω(1− 1
n ) + τ —Ω ≥ n · τ

Ω —Ω < n · τ (7)

Formula 7 suggests that if we shape traffic at sources more coarsely, propa-
gation delay upper bound will increase.

2.3 Partial network load
We assume in all our speculations above that network can be fully loaded. In
fact, designer may choose to limit the load on the network to some specific value
L ∈ (0, 1].

We will define limited network load with coefficient L as

• network where during any period of time Ω any switch can receive on all
input ports packets targeted for the same output port with aggregate size
of up to Ω · L (in terms of transmission time).

With this definition we can repeat same speculations we had in section 2.2 for
fully loaded network, but instead of Ω we will need to substitute Ω · L because
this will be our maximum burst size now. With this in mind formula 7 will
become:

T = δ ·N + τ, δ =
{

ΩL(1− 1
n ) + τ —ΩL ≥ n · τ

ΩL —ΩL < n · τ
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2.4 Varying number of ports for switches
We can further generalize formula for networks with switches each having dif-
ferent number of ports. Let’s denote number of ports switch number i has as
ni. Using this we can easily generalize formula 7 to

T =
N∑

i=i

δi + τ, δi =
{

ΩL(1− 1
ni

) + τ —ΩL ≥ ni · τ
ΩL —ΩL < ni · τ

, . (8)

2.5 Adding lower-priority interfering traffic
It is very easy to extend equation 8 to take into account presence of an interfering
traffic of a lower priority. To do that we add two more assumptions about our
network in addition to assumptions spelled out in section 1.1.

• Network has a lower priority interfering traffic with the maximum packet
transmission time τ ′ and this traffic is serviced in the router using a strict
priority scheduling. Essentially this means that this traffic has a separate
output queue which is serviced only when our higher-priority output queue
is empty.

• Lower-priority frame transmission is not interrupted by the arrival of
higher-priority frames into the higher-priority output queue .

It is easy to see that with this model at each hop we will incur at the maximum
an additional delay τ ′.

It will happen when our burst constructed in section 1.3 gets queued up
when lower-priority frame transmission just got started. And this means indeed
an additional τ ′ delay. On the other hand delay cannot exceed τ ′ since this
would mean that more than one lower-priority packet got serviced while at least
one higher-priority packet (marked packet) was queued up, which is impossible
with strict-priority scheduling.

With this in mind we can extend expression 8 to

T =
N∑

i=i

δi + τ + N · τ ′. (9)

Note that lower-priority traffic is not expected to abide any bandwidth re-
striction. In particular parameter L only limits bandwidth for a higher-priority
traffic.

2.6 Adding routing delay
We can take into consideration the fact that routing does not generally happen
instantaneously we can replace assumption of zero-time routing set forth in
section 1.1 with the assumption that routing is bounded by some time ξ.
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Worst-case scenario described in section 1.3 have the same effect on the
maximum queue occupation. Since all packets including marked packet are
getting delayed some amount of time before being queued in the output queue,
we can always arrange them on the wire such that interfering packets will queued
just a moment before our marked packet exactly reproducing same worst-case
configuration. This means that marked packet at the maximum will experience
an additional delay of ξ at each hop. Adding this delay to formula 9 we get

T =
N∑

i=i

δi + τ + (τ ′ + ξ) ·N. (10)

3 Worst-delay expression analysis

3.1 Parameter sensitivity
In the formula 10 delay is a linear function of all variables. For the sake of
simplicity we will consider all switches having the same number of ports ni = n.
This will simplify latency expression to:

T = δ ·N + τ + (τ ′ + ξ) ·N, δ =
{

ΩL(1− 1
n ) + τ —ΩL ≥ n · τ

ΩL —ΩL < n · τ .

Looking at n,N as given parameters of network topology, sensitivity to other
variables changes can be easily obtained by getting partial differentials:

∂T

∂τ
=

{
(N + 1) —ΩL ≥ n · τ

1 —ΩL < n · τ ,

∂T

∂ξ
= N,

∂T

∂(ΩL)
=

{
(1− 1

n ) ·N —ΩL > n · τ,
N —ΩL < n · τ (11)

From these expressions we can conclude that with given topology (given n
and N) all variables (τ, ξ,ΩL) have roughly the same influence on the overall
latency. This means we should start adjusting the one with the maximum
absolute value since this will provide more headroom for the adjustment. When
ΩL is bigger in value we should adjust it first. Once ΩL is the same of less than
τ , both variables should be adjusted. Finally, assuming that ξ is small, it will
provide very little room for improving a latency figure.

We skipped partial differential over τ ′ because adjusting a best-effort traffic
packet size is very hard in practical terms. Changing this size would cause
backward compatibility issues.

Figures 4 and 5 show increase of T with respect to number of hops N for
different network utilization levels L. In both graphs we have neglected the
routing delay and maximum packet size for all traffic is set to τ = τ ′ = 125µs.
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Figure 4: Latency for n = 5, Ω = 500µs

From figures we can see that the worst-case latency of 2 ms through 7 hops
for both 5-port and 2-port switches seems achievable only if we utilize link for
L = 20%. At the same time with full utilization and 5-port switches the latency
is bounded by 4.5 ms.

3.2 Considerations of traffic shaping
As it was noted earlier in our model parameter Ω defines the time period over
which sources do not produce more traffic than the available fraction of the
network throughput. Is is similar to assuming that sources are expected to
abide to their traffic contracts (aggregate, for sources with multiple streams)
when bandwidth is calculated over the time Ω.

This can be achieved with sources using transmission algorithm which imple-
ments leaky basket. This can be a simple credit-based algorithm, where credit
of at least the size of pending packet is needed for transmission to occur. Once
transmission occurs used credit is subtracted and next packet doesn’t go out
until credit is restored to be at least the size of the packet again. Credit is
linearly adjusted periodically with the appropriate increment which depends on
the target rate and Ω. Credit also gets saturated at some point.

When such leaky basket is used, in order to effectively use the bandwidth,
source will have to packetize its payload into the equal-sized packets. If this is
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Figure 5: Latency for n = 2 ,Ω = 500µs

not true, source will have to request more bandwidth than it will actually use
to account for odd-sized packets.

It is also worth noticing that as we shrink Ω, granularity of bandwidth
allocation will increase since it is defined by the minimum packet transmission
time τmin ≈ 10µs. For the case Ω = 75µs we will get only Ω

τmin
≈ 7 allocation

slots, while for Ω = 500µs we will get ≈ 50 slots.

4 Conclusions
We have produced an exact upped bound (worst-case) for propagation delay
under assumptions outlined in section 1.1 as well as generalizations for different
shaping time periods, best-effort traffic, different packet sizes, non-zero routing
delay. Formula 10 suggests that:

• delay can be varied effectively with changing link utilization level and
shaping period,

• assuming shaping period of 500µs and 5-port switches with 7 hops on
10/100 Ethernet:

– achieving propagation delay of 2 ms is only possible with 20% link
utilization,
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– latency is bounded by 4.5 ms when utilization is 100%,

• results assume adequate traffic policing (See section 3.2). Without policing
worst-case latency will be “even worse”,

• sources will need to packetize payload into equal-sized packets for efficient
bandwidth utilization,

• to further reduce latency figures network will have to employ some form of
synchronized media access arrangement or arbitration for sources, switches
or both. Better results are not achievable for completely asynchronous
network.
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