Worst-case Ethernet Network Latency for Shaped Sources

Max Azarov, Standard Microsystems (SMSC)

Background

- Deterministic QoS guarantees dictate a need for an analytical evaluation of QoS parameters: worst-case latency, worstcase latency variation.
- Shortage in the existing research of the QoS performance of the Ethernet with well-behaved end-points

Approach

- 1. Define a mathematical model
 - define bandwidth shaping period
 - define shaped sources, abiding to a bandwidth reservation on a shaping period
- 2. Illustrate worst-case latency configuration
- 3. Provide analytical proof of the worst-case latency formula
- 4. If needed, complement model with more details, go to step 2.

Current results

- Provided proof of the worst-case latency formula for a network of sources emitting same-sized packets
- Provided worst-case configuration and latency formula for the extended network model:
 - varying packet sizes
 - lower-priority interfering traffic
 - partial load and arbitrary shaping period
 - Internal routing delay
 - varying number of ports on switches

Worst-case latency for shaping period = 1ms, 5-port switches

N – number of switches, L – network load in %

In Progress...

- Add network model with more details:
 - higher-priority interfering traffic
 - two or more classes of traffic low-latency and higher-latency – with different priorities and different shaping periods

- add formula for latency variation

 Use results as a basis for a QoS-enabled traffic routing and policing (reservation enforcement) architecture