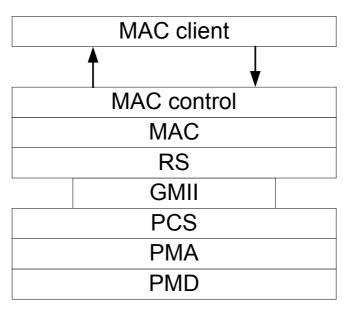
MPCP model for ResE

Onn Haran, Passave Glenn Algie, Nortel

ResE procedures


- The following procedures are required for ResE transport
 - Channel establishment
 - Timely transmission control
 - Derived requirement: network clock synchronization
- The following procedures are assumed to be out of IEEE802.3 scope
 - Network wide bandwidth reservation
 - Network wide transmission timing control

MAC control content

- 2 functions currently implemented in MAC control
 - 1. Flow-control (pause)
 - 2. MPCP, which includes:
 - Stations discovery and registration
 - Transmission control
 - Status report
 - Timebase maintenance
- 16-bits are reserved for MAC control opcodes, of them only 6 are used
 - New opcodes can be added

Layering model

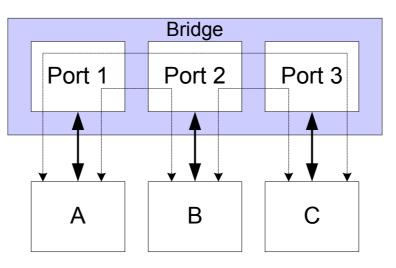
- If the project is part of Ethernet then functionality should be specified in MAC control
- Ground assumption: Anything below MAC control must not be changed

IEEE 802.3 RE Study Group Vancouver

Placing timebase above MAC control

- Ethernet is not aware of any timebase above it
- Ethernet can't gate packet transmission based on external timing
- Upper layers traffic is susceptible to queuing delay
 - Delay and jitter in switch(es) can't be guaranteed
 - Delay and jitter between MAC and upper layer can't be guaranteed

Principles of MPCP operation

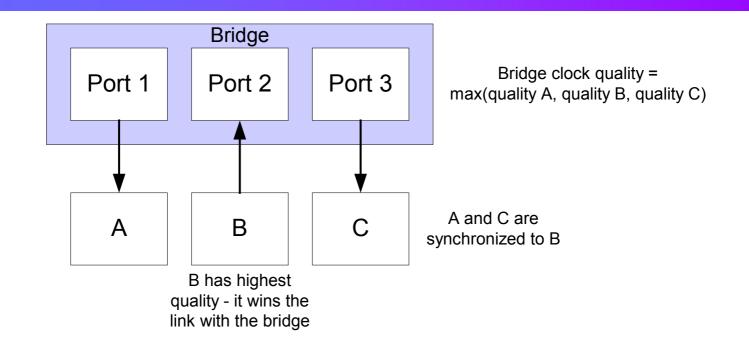

- The essence of MPCP is scheduling future transmission opportunities to avoid collisions
- Distributed events are synchronized to a central counter
- Synchronization is performed at MAC control sublayer

MPCP timing model

- A global counter exists in the OLT
- Events are synchronized to arrive at the OLT
- ONU updates its local counter based on arriving timestamp
- Every MPCP message includes the local clock value sent as a timestamp

Channel establishment

- Application layer channel establishment is required
- Low layer channel establishment is also required
 - RE aware detection: must be known to Ethernet
 - Enables guaranteed SLA end-to-end channels


Lower-layer channel establishment

- In EPON, ONUs are attempting to register to OLT
 - Unique identity is assigned to each
- In ResE, no pre-defined partition to master and slave role
 - Concurrent discovery might be resulted
- Required extensions to MPCP
 - State machine modifications for concurrent discovery

Network wide timing (1/2)

- Timebase can be propagated in the network
 - In each link, the clock with better quality amongst the two is used
 - In a bridge, the port with better clock quality is sharing its clock with remaining ports
 - Out of scope
- End result: all links are synchronized on best available clock

Network wide timing (2/2)

- Required extensions to MPCP
 - Addition of link clock selection mechanism
 - New OPCODE and state-machine are suggested

Transmission control (1/2)

- In EPON
 - OLT's transmission is continuous
 - ONU's transmission is controlled by messages from OLT
- In ResE, both ends should gate transmission
 - Three options:
 - 1. Each end station schedules the transmission of the other end station
 - 2. Each end station schedules transmission locally
 - 3. Combination of the above

Transmission control (2/2)

- Required extensions to MPCP
 - Local transmission control should be added to the gating mechanism
 - Potentially, selection mechanism between local and remote based gating should be added

Timing of transmission control

- In EPON, each vendor designs its own dynamic bandwidth allocation (DBA) for controlling ONUs transmission
 - Network is typically over-subscribed
- In ResE, scheduling is similar, if not simpler, and can be adjusted to any network timing model
 - Network wide synchronization of transmission from all devices is possible, though out of scope

Redundant functionality

- Some of EPON functionality is redundant in ResE
 - Turning PHY on and off
 - Negotiating PHY timing capabilities during discovery
 - Contention based discovery
- Those points have no significant burden on the protocol
- Beside that, MPCP is a great start point for extensions enabling ResE

Summary

- The location for ResE should be MAC control
- Timebase maintenance, transmission control and link establishment already exist in Ethernet: MPCP
- The existing mechanisms can be enhanced to support ResE