Functionality of ResE MAC

Onn Haran, Passave

March 2005

IEEE 802.3 RE Study Group Atlanta

EPON recap

- EPON was defined in 802.3ah published in 802.3-2004
 - MPCP described in clause 64
 - RS extensions described in clause 65
 - Uses full-duplex MAC defined in annex 4A
- Functionality contained in EPON is
 - Clock synchronization (unidirectional)
 - Entity detection and registration
 - Packet destination identification
 - Transmission control

EPON layering

March 2005

IEEE 802.3 RE Study Group Atlanta

Suggestion overview

- LLID is allocated per stream
 - Each stream has dedicated service interface
 - Allocated through all bridges between talker and listener
 - Link is bidirectional
 - Stream is identified by stream ID in each packet preamble (EPON LLID concept)
 - No change to Ethernet packet format
 - Link between bridges can include several allocated streams
 - Token bucket is used to control RS selection

Network timing

- No requirement for network time synchronization
 Clocks of different network entities may drift
- No notion of a cycle
- Presentation time is solved by upper layer

ResE channel establishment

- ResE channel creation begins following admission control completion
 - The listener starts by requesting to be registered by the following MAC
 - The above is repeated by each segment until reaching the talker
- Channel tear-down should be propagated in the network in case of disconnection
- MPCP registration protocol is used as is
 Discovery grant should be omitted

ResE channel establishment illustration

IEEE 802.3 RE Study Group
Atlanta

Stream identification by admission control

- The suggested admission control scheme contains a parameter of required bandwidth
- Adding LLID parameter to admission control process will assist in identifying the stream endto-end

Suggested layering

IEEE 802.3 RE Study Group
Atlanta

Transmission control – isochronous

- A dedicated logical MAC is added for each stream
- Token bucket is placed in MAC control controlling stream rate
 - Bucket limit and change rate are specified
 - For simplicity, bucket could be updated once in a while (125uS)
- MAC control commands RS source selection
 - Packet pending at service interface
 - Bucket value qualifies pending packet
- Isochronous MAC complies only with flow control containing its LLID

Transmission control – asynchronous

- A dedicated logical MAC is reserved for asynchronous transmission
- MAC control commands RS source selection
 - Packet pending at service interface
 - No isochronous MAC is allowed to transmit
- Asynchronous MAC complies with flow control
- No packet preemption

Network view

IEEE 802.3 RE Study Group Atlanta

Token bucket and clock drift

- Allowed drift in Ethernet is ±50ppm
- Faster running clock is supported by token bucket limit
- Slower running clock is supported by setting the change rate to be 1.0001 * desired rate

What remained from EPON?

- LLID in preamble (channel identification)
- Ability to define multiple logical MAC instances in a single physical MAC
- Ability to gate the MAC transmission using RS
- Registration scheme

What should be added?

• Token bucket in MAC control controlling RS layer

Summary

- Main properties
 - Dedicated service interface per stream
 - Bandwidth allocation and control for each stream at any bridge
 - No network timing synchronization
 - No changes in 802.1
- Estimated amount of work
 - Adding two clauses
 - MAC control modifications (very limited)
 - RS extensions (even fewer changes)