Comparison of Layer 2 CoS and ResE mechanisms in QoS delivery

Yong Kim

From the reflector traffic...(Hugh)

[why are we having PAR related issues?...]

- 1. The current standards for provisioning, admission control, policing and are...
- 2. These standards would be applied to our problem in this way...
- 3. Some or all of these do not meet our requirements because...
- 4. The originators of these standards have responded...
- 5. We think changes to 802.3 (or 802.1 for their discussion) will be better because...

Existing Layer 2 QoS/CoS standards

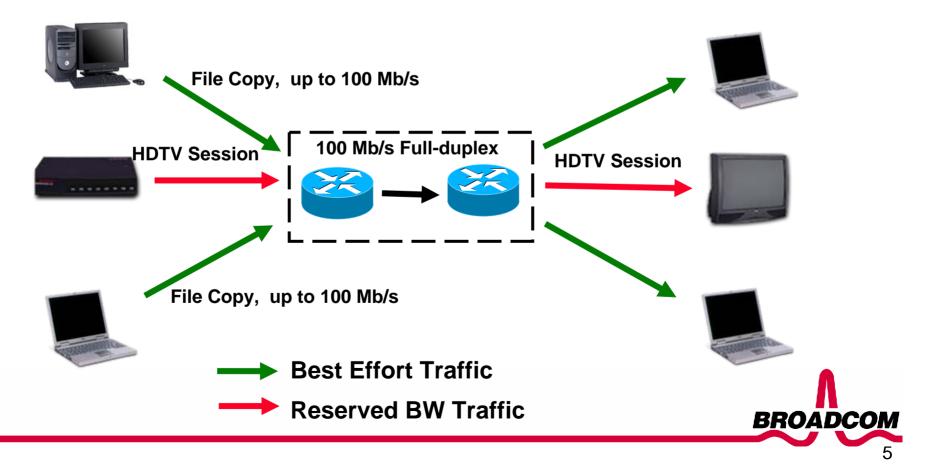
• IEEE 802.1D-2004 (includes priority) defines up to 8 level of priority

- but not queue draining procedure.
- Annex G (informative) describes queue mapping, but not scheduling
- Expected to be vendor dependent,"value-add".
- Expected to map and meet upper layer services.
- IEEE 802.1ad provider bridging work (rolled into Q-Rev) provides drop precedence.

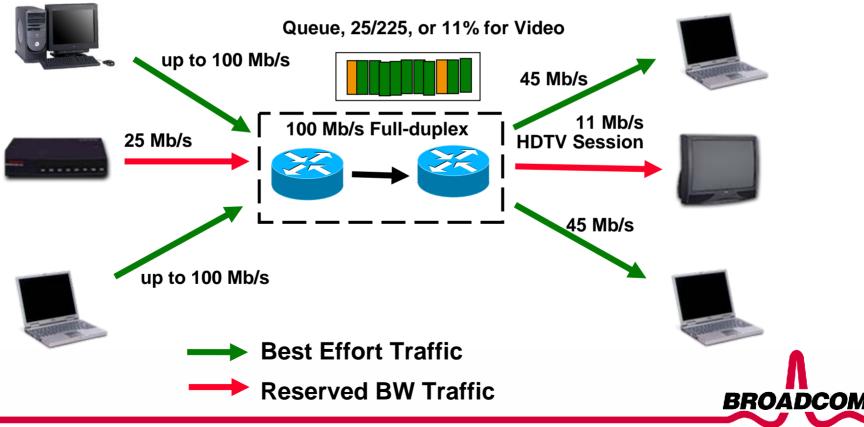
user_priority	Acronym	Traffic type		
1	BK	Background		
2	_	Spare		
0 (Default)	BE	Best Effort		
3	EE	Excellent Effort		
4	CL	Controlled Load		
5	VI	"Video," < 100 ms latency and jitter		
6	vo	"Voice," < 10 ms latency and jitter		
7	NC	Network Control		

Table G-3-Defining traffic types

Defining traffic type							
BE							
BE				vo			
BE			CL		vo		
BI	ĸ	BE		CL		vo	
BI	ĸ	BE		CL	VI	v	o
BI	ĸ	BE	EE	CL	VI	v	o
BI	ĸ	BE	EE	CL	VI	vo	NC
вк	—	BE	EE	CL	VI	vo	NC
	BI BI BI	BK BK BK BK	BE BE BK B BK BE BK BE	BK BE BK BE BK BE BK BE BK BE EE	BE BE C BE C BK BE C BK BE C BK BE CL BK BE EE CL BK BE EE CL	BE V BE CL BK BE CL BK BE CL VI BK BE EE BK BE EE CL VI BK BE EE CL	BE BE VO BE CL V BK BE CL V BK BE CL VI V BK BE EE CL VI V


Existing IP based Standard

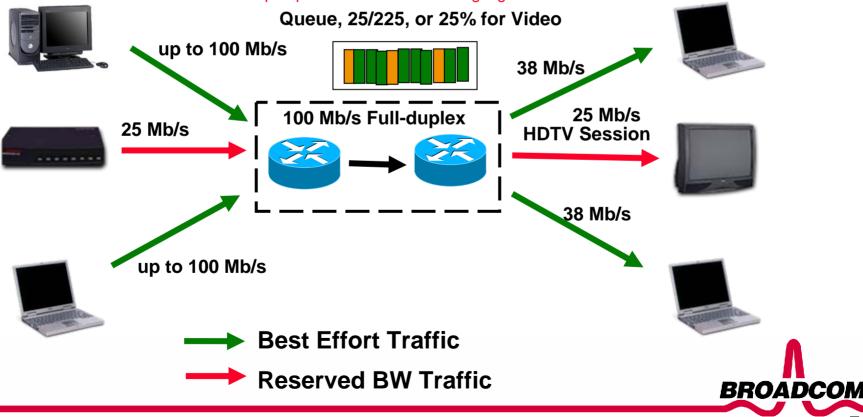
- IETF Work General QoS Services (DiffServ, IntServ, and RSVP, etc), but the following three are RFC specific to IEEE 802:
- RFC 2814 provides admission control, and RFC2815 provides Integrated Services to IEEE Devices, but not widely implemented.
 - RFC2814 SBM (Subnet Bandwidth Manager): A Protocol for RSVP-based Admission Control over IEEE 802-style networks. R. Yavatkar, D. Hoffman, Y. Bernet, F. Baker, M. Speer. May 2000. (Status: PROPOSED STANDARD)
 - RFC2815 Integrated Service Mappings on IEEE 802 Networks. M. Seaman, A.
 Smith, E. Crawley, J. Wroclawski. May 2000. (Status: PROPOSED STANDARD)
 - RFC2816 A Framework for Integrated Services Over Shared and Switched IEEE 802 LAN Technologies. A. Ghanwani, J. Pace, V. Srinivasan, A. Smith, M. Seaman. May 2000. (Status: INFORMATIONAL)
- DLNA –
- uPNP QoS –


Why Ethernet as is (i.e. QoS/CoS solutions) does not address this problem

- Consider Best Effort Traffic mixing with AV traffic
- Grossly simplified layer 3 (IP-TCP) behavior

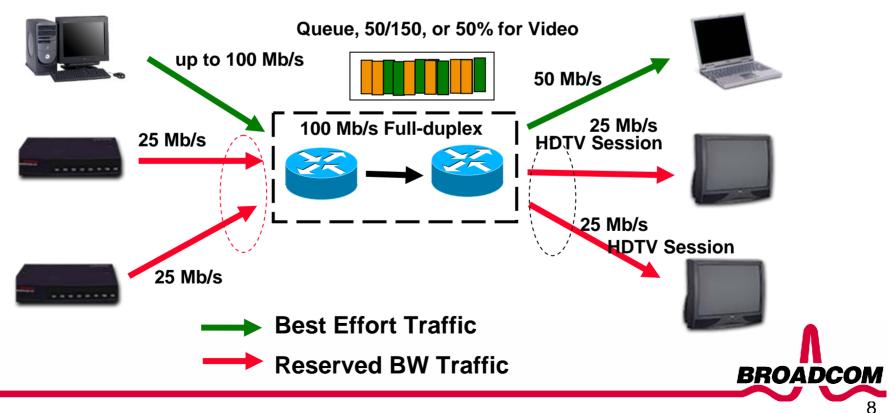
Why Ethernet as is does not address this problem – No CoS case

Consider no CoS no Residential Ethernet (simple model)

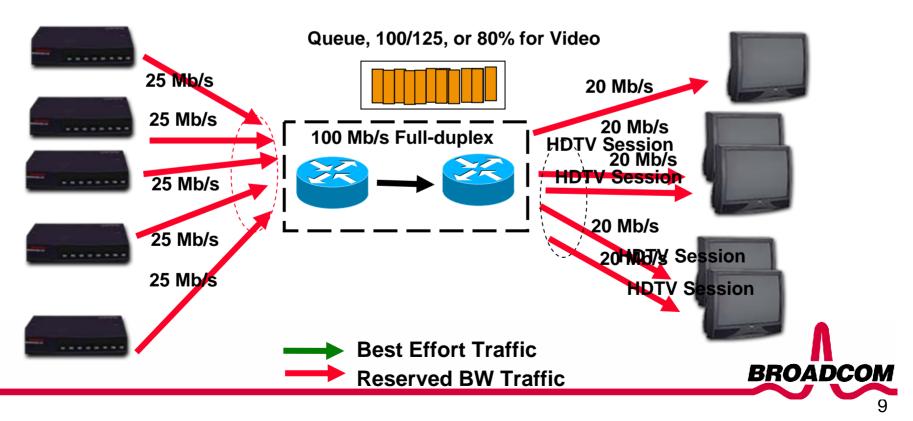


Why Ethernet as is does not address this problem – 2 CoS, Strict priority Case

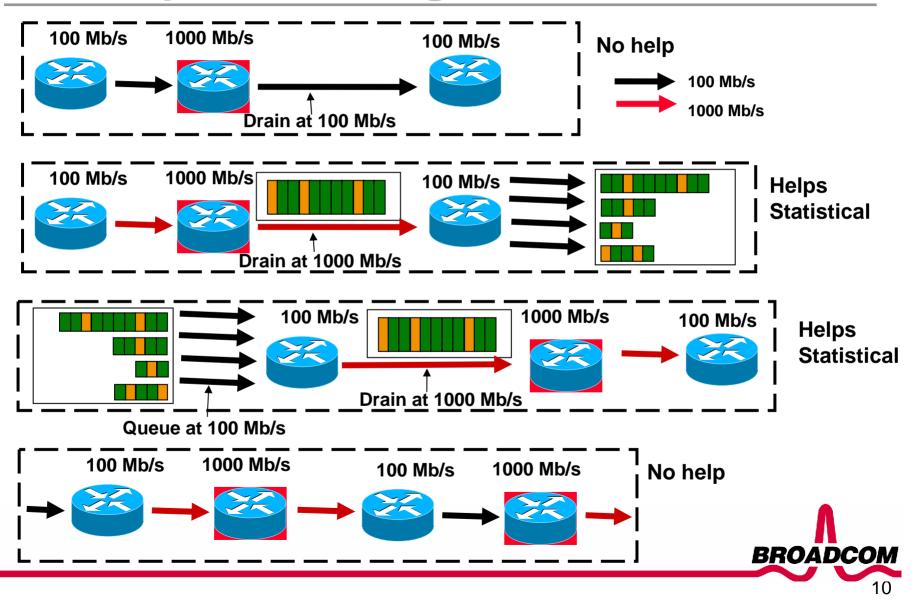
• Consider CoS, AV traffic runs at high priority.


Average throughput would be 25 Mb/s, but runs into

- Frame loss (buffer-full), Buffer starvation of high-priority traffic (could be carefully designed and configured)
- Also suffers from "Bunching, Bursting" problems that causes jitter (refer to Michael Johas Teener's Presentation)
- May be worse from frame loss perspective if other scheduling algorithms are used.


Why Ethernet as is does not address this problem – multiple ResE streams

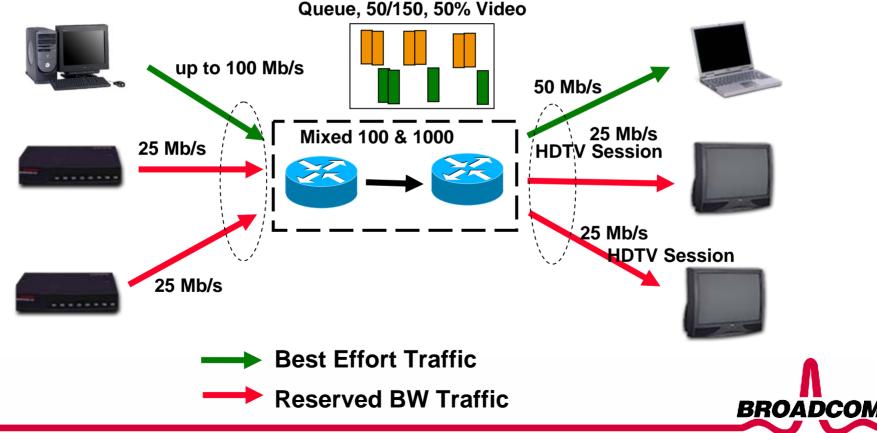
- Consider CoS, dual AV traffic runs at high priority.
- Average throughput would be 25 Mb/s each
 - Relative Bursts of the AV traffic
 - Causes "Bunching, Bursting" problems at high priority queues (Increased buffer requirements)
- Greater Issue: If more high priority traffic is added beyond 100 Mb/s, the network behaves like no QoS enabled network.



Why Ethernet as is does not address this problem – Exceeding link/device BW

- Consider CoS, dual AV traffic runs at high priority.
- If more high priority traffic is added beyond 100 Mb/s, the network behaves like no QoS enabled network.
- OK, how about gigabit (oversubscription)?

Why Ethernet as is does not address this problem – Gigabit Backbone


Why Ethernet as is does not address this problem – One of the proposed solution

Consider AV traffic runs in reserved bandwidth queues.

- AV traffic has guaranteed delivery slots

Bursting, Bunching limited to Best Effort Traffic

- Minimum guaranteed (defaults, provision able) best effort traffic service.

CoS Assignment Issue

• What's available

- up to 8 layer 2 classes
- RFC2814 SBM provides means of managing CoS assignment per admission control.

What is the issue.

Table G-2—Traffic type acronyms

user_priority	Acronym	Traffic type		
1	BK	Background		
2	_	Spare		
0 (Default)	BE	Best Effort		
3	EE	Excellent Effort		
4	CL	Controlled Load		
5	VI	"Video," < 100 ms latency and jitter		
6	vo	"Voice," < 10 ms latency and jitter		
7	NC	Network Control		

- CE end-point will want the highest priority encoding, whether or not network CoS enabled.
- Best effort data will continue to not care.
- Without enforcement/policing function, we expect two CoS service class encoding as the only stable network configuration.
- Guaranteed path bandwidth would alleviate this behavior, e.g. "if the path bandwidth is guaranteed, I'll request only what I need."

Conclusions

1. The current standards for provisioning, admission control, policing and are...

- IEEE 802.1: none, 802.3ar: MAC ingress/egress aggregate BW control.
- Layer 3 & higher: IntServ, DiffServ, SBM, DLNA, uPnP/QoS

2. These standards would be applied to our problem in this way...

[not covered in here, but they are being applied today sub-optimally..]

3. Some or all of these do not meet our requirements because...

- Not specified, or sub-optimal aggregation, or sub-optimal CoS class interaction.

4. The originators of these standards have responded...

- [not covered here.]
- 5. We think changes to 802.3 (or 802.1 for their discussion) will be better because...
 - IEEE 802.1D Bridging architecture needs to specify queue-draining (scheduling) specifications, recommendations, etc.
 - IEEE 802.3, at a minimum needs to deal with time-awareness and admission control in or near the MAC.

BROADCOM