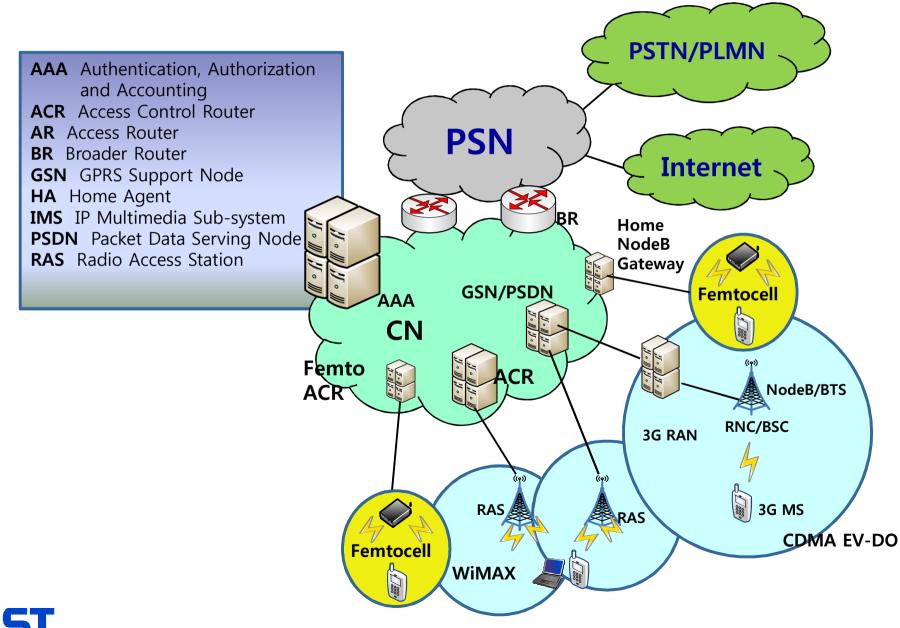
Synchronization Requirements in Cellular Networks over Ethernet

IEEE 802.3 TS Interim, May. 2009

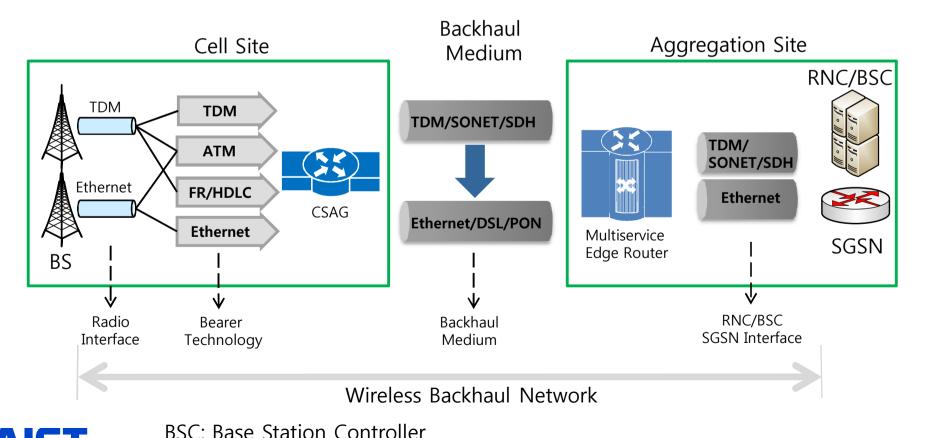
J. Kevin Rhee¹, Kyusang Lee², and Seung-Hwan Kim³

¹ KAIST, ² ACTUS Networks, and ³ ETRI, S. Korea



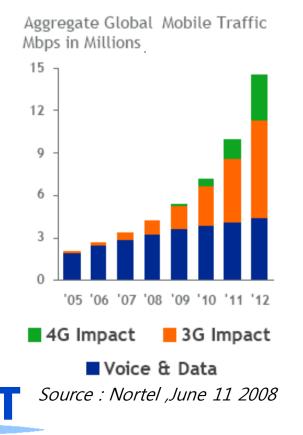
Acknowledgment

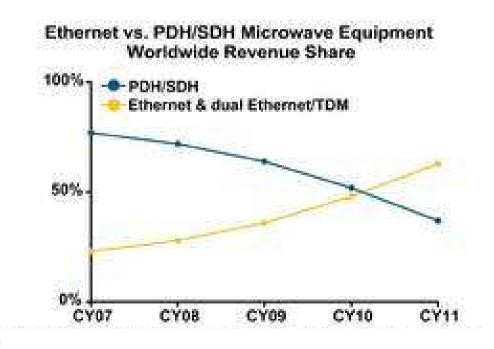
- ChanKyun Lee, KAIST
- SeongJin Lim, KAIST


Mobile Cellular Network: WiMAX/EV-DO

Wireless backhaul

- Wireless backhaul network connects wireless base stations to the corresponding BSC
- It delivers the expected bandwidth requirements of new technologies such as WiMAX, 3G, and 4G.
- PSN and TDM can be used for wireless backhaul network

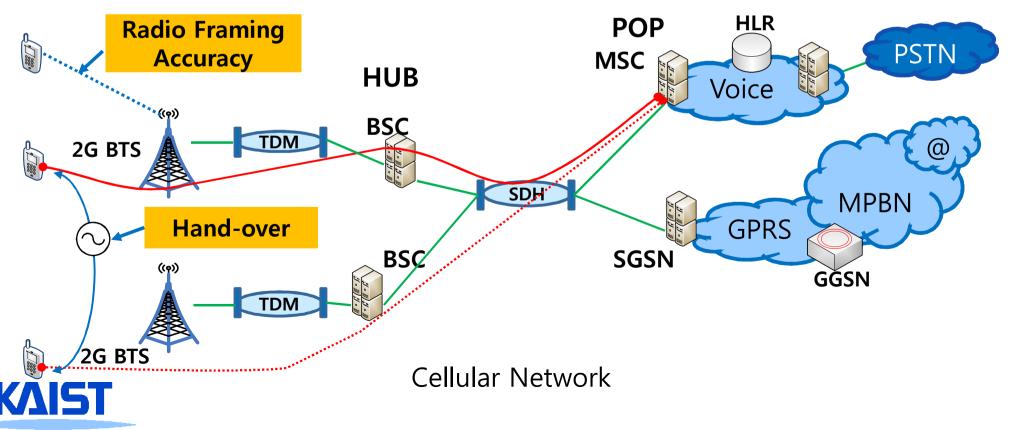



PSN: Packet Switched Network

Backhaul Market Growth

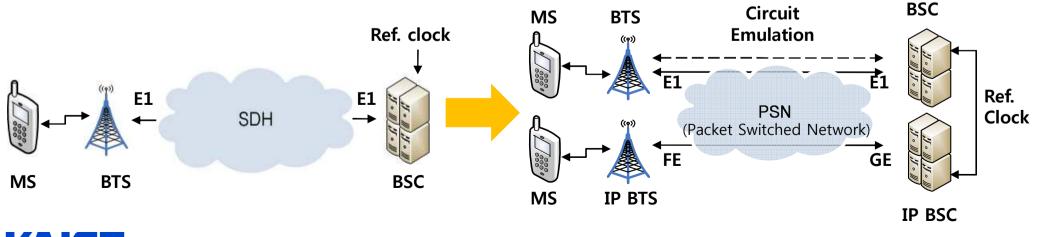
- 3G and 4G is driving 25-40% a year growth in mobile backhaul traffic
- The Carrier Ethernet markets are expected to increase 76% by 2011
- Data oriented mobile traffic is increasing
- Legacy TDM-based system is being replaced packet-based Ethernet solutions (More bandwidth per connection)

Source: Infonetics Research, Microwave Equipment Market Outlook March 2009


Carrier Class Ethernet Backhaul

- PSN(ETH, IP/MPLS) has been replacing TDM networks (SDH/PDH)
 - Cheaper CAPEX and OPEX
 - High Utilization
- However, it needs guaranteed
 - Network Resilience
 - Fault/Performance monitoring via OAM
 - QoS, Delay, Jitter
 - Timing/Synchronization transport
- Ethernet should support the aforementioned functions and meet time/sync requirements!!

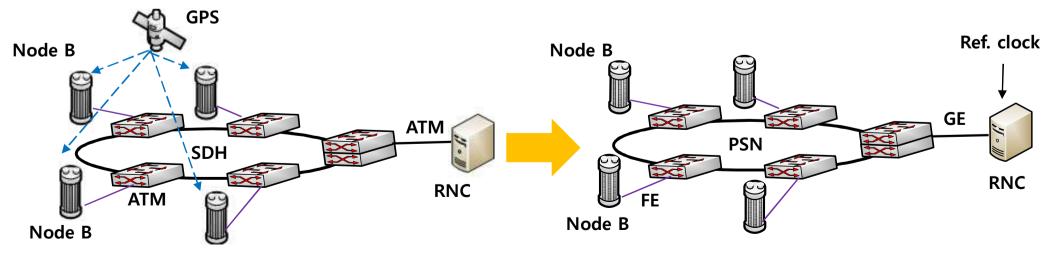
Synchronization in Backhaul


- Why Synchronization?
 - BTS/NodeB are synchronized to BSC, RNC, MSC, and MGW for end-to-end sync
 - For Radio Framing Accuracy and Hand-over, 0.05ppm sync at BTS/NodeB is needed
 - Significant to interference control on cell boundaries

Requirements of backhaul synchronization - Synchronization in 2G/GSM

- Sync requirement in legacy 2G/GSM
 - SDH freq. sync: ±50ppm
 - BTS freq. sync: ±0.05ppm
 - Ref. clock is distributed via SDH/PDH
- Sync requirement in future 2G/GSM
 - PSN freq. sync: Not strict
 - BTS freq. sync: ±0.05ppm
 - Ref. clock is distributed via PSN
 - IEEE 1588 is being used.

Source: A. Zhou, X. Duan, "Requirements and viewpoints for backhaul synchronization," IETF TICTOC WG, Mar, 2008



S Legacy 2G/GSM Networks

2G/GSM Networks

Requirements of backhaul synchronization - Synchronization in 3G/TD-CDMA

- Sync requirement in legacy 3G/TD-CDMA
 - SDH freq. sync: ±50ppm
 - BTS freq. and phase sync: ± 0.05 ppm and $\pm 3 u$ s
 - Ref. clock is distributed via SDH/PDH for transport network.
 - BTSs are synced via GPS.
- Sync requirement in future 3G/TD-CDMA
 - BTS freq. and phase sync: ± 0.05 ppm and ± 3 us
 - IEEE 1588 is being used for frequency and phase sync.

Legacy 3G/TD-CDMA Networks

3G/TD-CDMA Networks

Next major market opportunities - Sync requirements of Femtocell and WiMAX

- Femtocell
 - The small cell deployed indoors, which communicates with cellular network over a broadband connection.
- Synchronization of Femtocell
 - Related handover and interference.
 - Time sync accuracy (Timing difference bet. Macro BS and the Femto BS)
 - 0.2 μ s (The distance bet. Femto BSs = 30m)
- WiMAX
 - Freq. and phase accuracy by WiMAX Forum: 2ppm, 1*u*s (for TDD)
 - IEEE 1588 over IP/Ethernet backhaul
 - Low-cost-standalone solution
 - Provides sub microsecond accuracy
 - IEEE 1588 to WiMAX/Femtocell is under study at IEEE 802.16m.

Source: WiMAX Forum Tech. WG, "WiMAX Forum Mobile System Profile Specification: Release 1.5 Common Part," rev. 0.2.1, Feb 2009. Source: Guang Han, et al., "Time synchronization for Femtocells," IEEE 802.16m, Oct2008

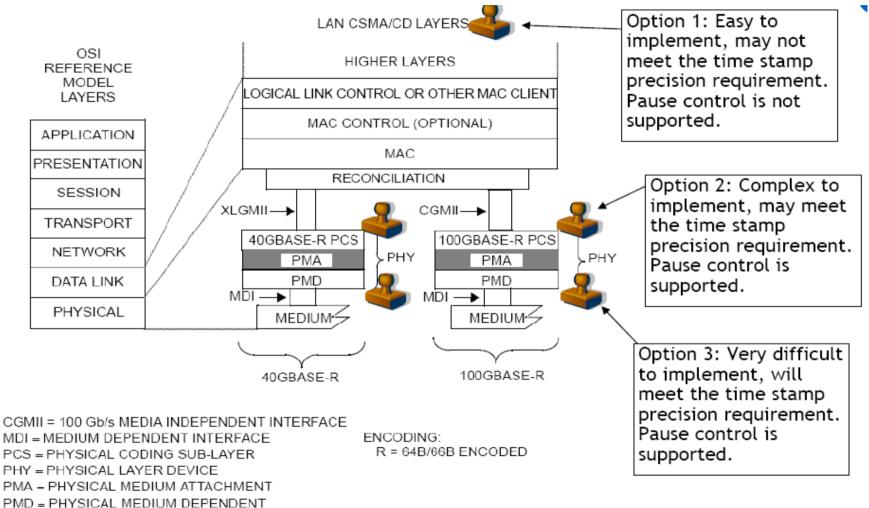
Summary of synchronization requirements

- Two mobile wireless network sync schemes
 - FDD radio-based mobile wireless sync
 - WCDMA FDD in GSM and FDD LTE
 - Freq. accuracy: 0.05ppm
 - TDD radio-based mobile wireless sync
 - It requires freq. accuracy, phase alignment, and time alignment.
 - CDMA, cdma2000, Mobile WiMAX 802.16e, TDD LTE
 - Freq. accuracy: 0.05ppm
 - Inter-BTS time alignment: 2.5 us to 10 us

	GSM/WCDMA/ CDMA2000	TD-CDMA	WiMAX	Femtocell
Freq. accuracy	0.05 ppm	0.05 ppm	2 ppm	
Timing accuracy		3 <i>u</i> s	1 <i>u</i> s (for TDD)	0.2 <i>u</i> s

<Summary of synchronization Requirements>

Source: Patrick Diamond, "Packet Synchronization in Cellular Backhaul Networks," Semtech White Paper Oct. 2008) Source: S.-P. Yeh, et al, "WiMAX Femtocells: A Perspective on Network Architecture, Capacity, and Coverage," IEEE Comm. Mag., Vol. 46, Issue 10, Oct. 2008 Source: V. Chandrasekhar, et al., "Femtocell Networks: A Survey," IEEE Comm. Mag., Vol. 46, Issue 9, SEP. 2008


Supports of 1588 & 802.1AS

- Using IEEE 1588 for WiMAX may be adequate.
 - However, it is not suitable to support legacy 2G/3G, and 4G.
 - IEEE 1588 or 802.1AS should support sync requirements for legacy systems and new systems.
 - More accurate timestamp function is needed!!
 - Options
 - Use of very accurate clock
 - Timestamp in physical Layer

Architectural consideration of timestamp for 802.3

Eg. 802.3ba model

XLGMII = 40 Gb/s MEDIA INDEPENDENT INTERFACE

Figure 153–1—40GBASE-R and 100GBASE-R PMA relationship to the ISO/IEC Open Systems Interconnection (OSI) reference model and IEEE 802.3 CSMA/CD LAN model

Conclusions

- Time synchronization in fast growing mobile backhaul market
 - Time sync application in the backhaul market is anticipated to be even larger than AV applications in the near future.
- IEEE 1588 and IEEE 802.1AS will be the major solutions.
 - Multi-hop Precision Time Protocol will be used.
 - PTP messages will be transported over wired/wireless multihops.
- Current timestamp at MAC or client layer may not be qualified for ppb level synchronization accuracy requirements.
- IEEE 802.3 needs to provide more accurate timestamp information.
 - IEEE 802.3 may require a timestamp function in the PCS, PMA, or PMD sublayer.

