Timestamp Provisioning in IEEE 802.3

Yuanqiu Luo Frank Effenberger

Huawei Technologies USA

September 2009

Outline

≻ Why

➤ Where

≻ How

IEEE 802.3 Face to face

Page 2

Broad market of time synchronization

- Mobile backhaul
- Carrier class Ethernet
- > Audio video applications
- Other markets

IEEE time synchronization standards

- ➢ IEEE Std 1588TM − 2008
 - > Approved

A precision clock synchronization protocol for networked measurement and control systems

- Accuracy depends on the ability of timestamping messages
- ➢ IEEE P802.1AS
 - Under development

Specifies the protocol and procedures used to ensure that the synchronization requirements are met for time sensitive applications across bridged networks

Needs notification of sending/receiving of frames

- ➢ Both IEEE 1588 and IEEE 802.1AS need the timestamp facilities
 - IEEE 802.3 does not specify a timestamp interface for the notification of frame sending/receiving
 - > Notification of "start of frame" being sent
 - Notification of "start of frame" being received
 - Notification of accuracy
 - It is desirable to specify related timestamp facilities in 802.3

Where to timestamp frames

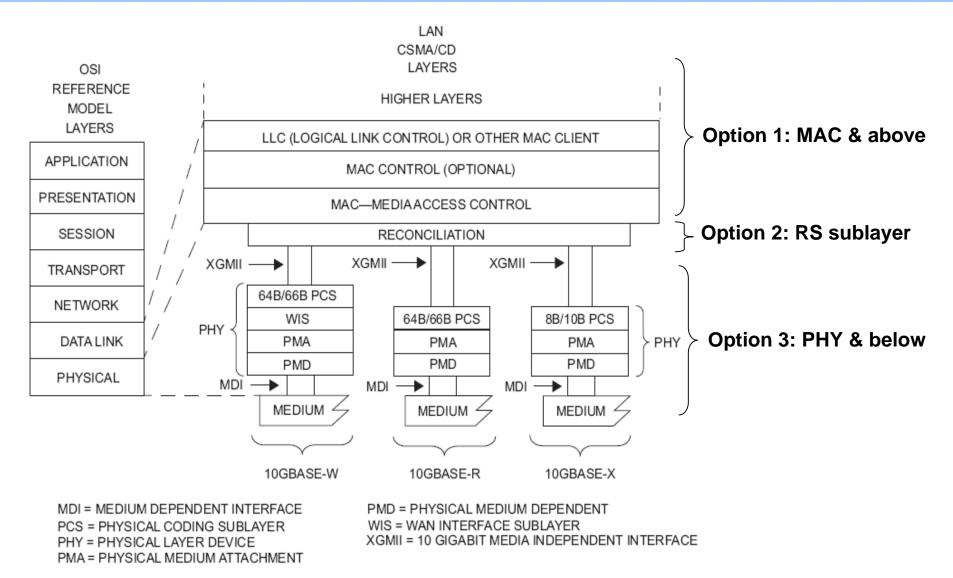


Figure 44–1—Architectural positioning of 10 Gigabit Ethernet

The timestamp point is expected to ...

- Provide distinct pattern for frame recognition
- Support notification of frame sending and receiving
- Report accuracy of the aforementioned notification
- Specify a unified interface to higher layers
- Enable easy implementation of timestamp
- Meet requirement of timestamp precision

- Latency of frame sending/receiving might not be deterministic
- The easiest implementation among 3 options
- Internal delay due to MAC and higher layer processing changes
- Accuracy downgrade as compared to the other 2 options

Option 2: Reconciliation sublayer

Impact of MAC and higher layer processing delay would be eliminated

- Improved timestamp accuracy
- Moderate complexity of implementation

Option 3: PHY layer and below

- Eliminates internal processing delay impact
- Precise timestamp information
- High complexity of implementation

Three options

	Option 1: MAC & above	Option 2: RS	Option 3: PHY & below	
Complexity	Low	Medium	High	
Implementation difficulty	Low	Medium	High	
Precision	Low	Medium	High	

- Each frame can be identified by its ID/pattern
- Records the time when a frame passes the selected timestamp point
- Frame ID/pattern is associated with the recorded time
- > Timestamps it
- Provides the timestamp interface (including the timestamp and its accuracy) to upper layers

Which field(s) to carry frame ID / pattern

IEEE 802.3 Frame Format

Preamble	SFD	Destination	Source	Type/Length	Payload	FCS	IFG
7 bytes	1 bytes	6 bytes	6 bytes	2 bytes	n bytes	4 bytes	12 bytes
SF	D: Start of Fra	me Delimiter	FCS: Frame Check Sequence		IFG: Inte	erframe Gap	

The 8-byte synchronization pattern (7-byte Preamble and 1-byte SFD) can be utilized to carry frame ID

Frame ID is unique within a synchronization interval of IEEE 1588 and IEEE 802.1AS

- ➢ Frame ID size
- Frame ID content
- It is desired to keep a frame delimiter like SFD
- Error control and detection are also desired

Frame ID

Typical time synchronization intervals in IEEE 1588 and IEEE 802.1 are in the order of millisecond

 \succ Frame ID can be designed to roll over in seconds with increment of 1 (it is actually a frame sequence number)

➤ The shortest Ethernet frame contains 84 bytes (7-byte preamble,1-byte SFD, 14-byte header, 46-byte payload, 4-byte FCS, 12-byte IFG)

> At 100Gb/s, a 4-byte frame ID field rolls over every ~28 seconds

≻ CRC-8

- Detects 2 errors
- Corrects a single error
- SSD (Start of Sequence number Delimiter)
 - Different pattern from SFD

Different from the start of LLID delimiter (SLD) subfield in IEEE 802.3 Clause 65 (which is 0xd5)

Frame format

IEEE 802.3 Frame Format with Frame Sequence Number

Preamble	SSD	Seq#	CRC	Destination	Source	Type/Length	Payload	FCS	IFG
2 bytes	1 byte	4 bytes	1 byte	6 bytes	6 bytes	2 bytes	n bytes	4 bytes	12 bytes

SFD: Start of Sequence number Delimiter FCS: Frame Check Sequence IFG: Interframe Gap

Conclusion

- ➢ It is critical to provide timestamp interface in IEEE 802.3
- RS sublayer can fulfill timestamp facilities
 - Moderate complexity, implementation difficulty, and precision
- > A mechanism of carrying frame ID is required
 - Uniquely identifies each frame in a synchronization interval
 - The reference point is RS sublayer

Thank you