Auto-configuring Aggregate Links

Objectives & A functional partition

Mick Seaman mick_seaman@3com.com Auto-configuring Aggregate Links

Presentation Goals

Share some ideas

Introduce some objectives

Presentation Non-goals

• To claim unique/best perspective

Overview

- Auto-configuration Philosophy
- A functional partitioning
- Objectives to take away

Auto-configuration Philosophy (1)

- There is no magic t=0 for LAN switches

 Links can be added
 - removed
 - …… aggregated
 - …… disaggregated
 - fail
 - ……and recover
 - without switches being powered down, reinitialized just as part of normal network operation

Auto-configuration Philosophy (2)

- If it doesn't auto-configure we may as well use routing with equal cost load sharing
 - switches are distinctly different because of easeof-administration
 - different economic approach is required if two competing solutions are to survive
 - short-term alternatives are not worth the standardization time and hassle

Auto-configuration Philosophy (3)

- Swift and Sure Major obstacles
 - excessively chatty protocols, particularly after major network events (neither swift or sure)
 - not using low-level indicators (not swift)

 - relying on low level indicators (not sure)
 - not continuous (when am I finally sure?)

Auto-configuring Aggregate Links

- Aggregate Link Identify

 identifies likely candidates for an aggregate link

 Aggregate Link Verify, Initiate, Maintain

 verifies all links connect the same two systems
 synchronize start use of links as an aggregate
 add and remove links to/from existing aggregate
- Link <u>Failure Detect</u>
 identify failed links rapidly

Aggregate Link Identification (1)

- Potentially an additional repetitive message on every link in the network
 - many links may not be aggregated pure waste
 - existing protocols already identify opportunities
 - » see later example
 - media specific opportunities?
 - manual "hints" for single ended configuration
 - brute force as a fall back
- Keep this separate
 - even if available in the aggregation tool kit

Aggregate Link Identification (2)

 Links identified as candidates for aggregation within 1 minute of adding or physically rewiring link

Verify, Initiate, Maintain (1)

- Verify connectivity (two systems, point-to-point)
- Verify both systems can aggregate the links
- Initiate use of links as aggregate
- Signal 'single-ended' failure/out of use of link
- Remove link from aggregate
- Add link to aggregate
- Guard against missing physical link indicator and one-way connectivity

Verify, Initiate, Maintain

- Verification, Initiate, and Add not time critical
- Eliminate duplication risk on initiation and addition
- Minimize loss risk on initiation and planned Removal
- Minimize loss window for single ended failure
 < 1 second, allow < 50 milliseconds
 < any periodic message generation

Failure Detection

Minimize loss window, within 50 milliseconds

Link Identification : Example

- Spanning Tree identifies potential aggregates
- ... bridge ports with same Designated Port
- … Root Port and/or Alternates
- ... not limited to links "in the Spanning Tree"
- ... identified at one end of the link(s)

Conclusion : Set Objectives for ...

- No absolute requirement for additional protocol on links which will never be aggregated
- Continuous switch operation
- Timing, loss, duplication, message frequency for verify, initiate, add, remove, failure, failure detection
- Deterministic outcomes