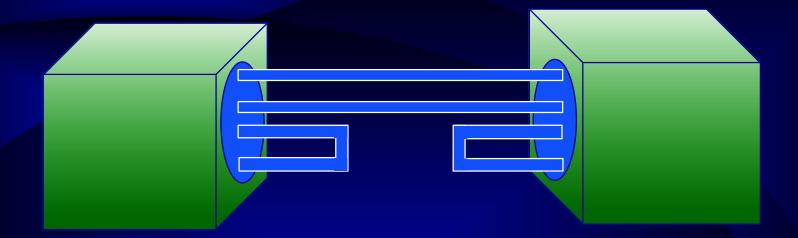


Joris Wils IEEE 802 Plenary March 1998

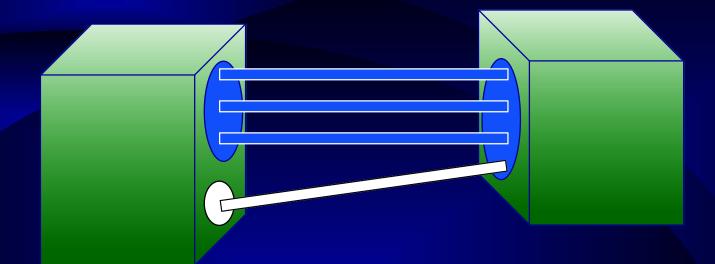
3 Com[®] Introduction

- Present consequences of AgL misconfiguration
- Propose a list of requirements for a AgL verification protocol

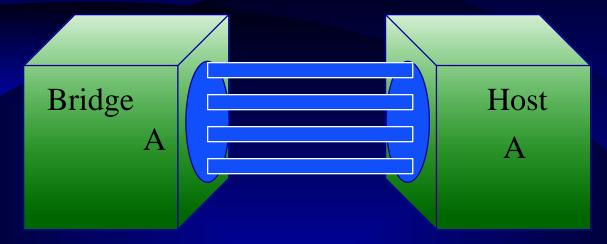
3 Com[®] Overview


- Network Misconfiguration major cause of network failure
 - Much larger cause than equipment failure
- AgL increases likelihood of misconfiguration
 - more ports and links to manage
- AgL increases severity of network failure
 - AgL misconfig confuses STP
 - AgL misconfig can cause rapid continuous address moves
- A simple verification protocol can detect misconfiguration and prevent network failure

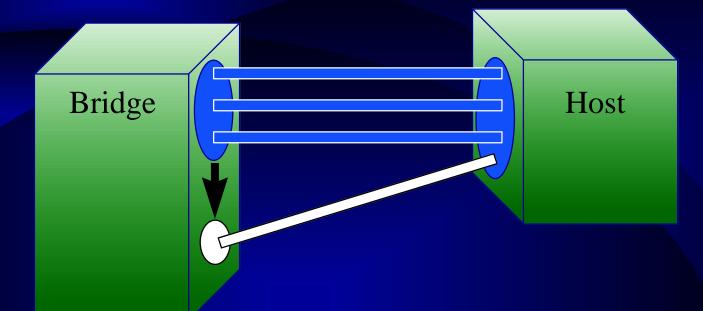
Page 3 of 17


- Loopbacked individual links
- Split Aggregate Links

3Com[®] Misconfiguration: Loopback

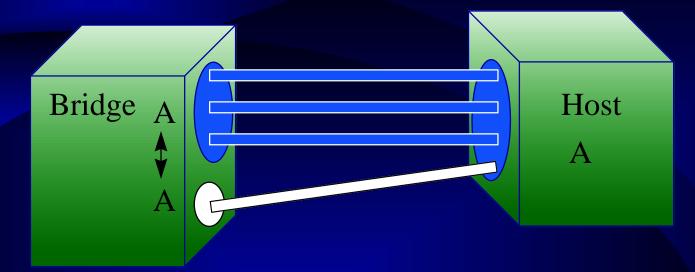

- Loopback links turn trunks back on themselves
- Result: Some conversations disappear
- Result: Bridge loop
- Result: Erroneous & excessive address moves

3Com[®] Misconfiguration: Split-AgL


- Split AgL created when a port is taken out of an AgL on one side
- Result: Some conversations disappear
- **Result:** Excessive address moves
- **Result:** Spanning Tree failure

^{3Com}^B Misconfiguration: Split-AgL Example

- Assume:
- AgL connects Bridge and End Host
- End Host as Mac Address A
- Bridge has learned Host's Mac Address


^{3Com} Misconfiguration: Split-AgL created

mgr reallocates a port from one AgL to another
OR a wire is plugged into the wrong port

Page 8 of 17

³Com³ Misconfiguration: Excessive address moves

 At this point Address A moves from on AgL to the other on the bridge depending on to which AgL the last packet was sent

Joris Wils

Aggregate Link Verification Protocol: Justification and Requirements

Page 9 of 17

3 Misconfiguration: Consequences

- Out of Order Packets
- If AgL are in different Vlans
 - lost packets
- If Host is a Bridge
 - many mac addresses will move so many devices will be impacted
 - large #s of packets lost and subsequent retries
 - Spanning Tree will not detect the problem and may reconfigure constantly

3 **Com**[®] **Requirements: General**

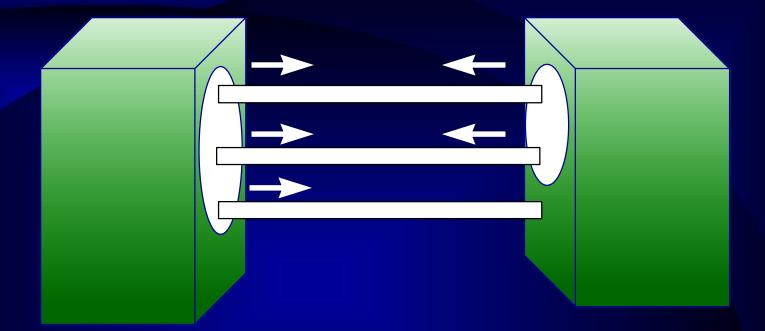
- Network Configuration is a planned event
- Configuration and Verification done in ~1-3 seconds
- Unlike equipment failure, which can happen at inopportune events
 - failover probably should be handled in 0.1 seconds or less

3^{Com[®]} Requirements

Verify:

- matching AgL configurations on either end
- individual link speeds equal
- individual link modes equal
- individual link functioning
- Simple:
 - Low CPU overhead
 - Simple message format
 - Minimal network utilization

3 Com[®] Requirements: When

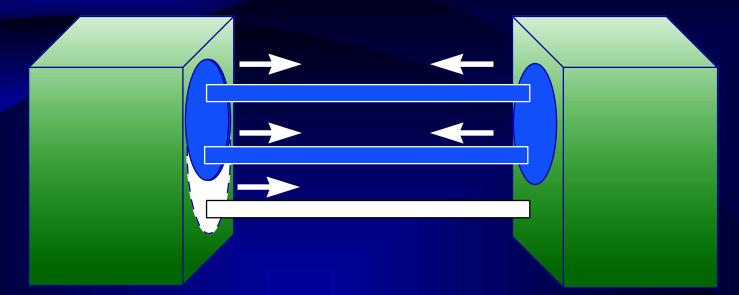

Triggers

- Link addition or removal
- Link up event
- Periodic
 - Catch failed triggers
 - 1 poll every 2 seconds

³Com² Requirements: Auto-Configuration Protocol

- May be part of an auto-configuration protocol
- Must be useable in a manual configured situation

3 Com[®] Requirements: example


each end first sends AgL verification packets out of each individual port
no data packets initially

Joris Wils

Aggregate Link Verification Protocol: Justification and Requirements

Page 15 of 17

3Com[®] Requirements: example cont.

- each end uses the individual links that receive matching packets from the other side
- each end periodically sends verification packets

Joris Wils

Aggregate Link Verification Protocol: Justification and Requirements

Page 16 of 17

- AgL misconfiguration can have severe and hard to detect consequences
- Simple protocol required to verify configuration