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Introduction
In this document we develop a simple model which predicts the performance of laser based 
multimode optical fiber data communication links. The model has been developed as a tool to assist 
the IEEE 802.3z understand potential trade offs between the various link penalties and as a baseline 
for discussions on link specification. The model is an extension of previously reported models for 
LED based links [1,2]. Power penalties are calculated to account for the effects of intersymbol 
interference [3], mode partition noise [4], extinction ratio and relative intensity noise (RIN). In 
addition, a power penalty allocation is made for modal noise [5] and the power losses due to fiber 
attenuation, connectors and splices are considered.

In the model we assume that the laser and multimode fiber impulse responses are Gaussian [2]. 
However, we assume that the optical receiver is non-equalized with a single pole filter having a 3 dB 
electrical bandwidth of BWr(3dB). In this paper we analyse the case where the receiver has an 
exponential impulse response. However, we also state the results for a non-equalized receiver having 
a raised cosine response [2]. The model includes expressions that convert the rms impulse width of 
the laser, fiber and optical receiver to rise times, fall times and bandwidths. These calculated rise 
times, fall times and bandwidths are used to determine the fiber and composite channel exit 
response and the ISI penalty of the optical communications link. We assume that rise times and fall 
times are equal and shall only refer to rise time throughout the the rest of the paper. For real 
components the larger of the experimentally measured rise or fall time should be used as the input 
parameter. 

For the maximum rms laser spectral linewidths being considered by IEEE 802.3z, 0.85 nm and 4 
nm rms for the short wavelength and long wavelength specifications respectively, the worst case 
modal bandwidths of the multimode fiber, 160 MHz.km or 500MHz.km depending on wavelength and 
core diameter, the maximum link length is determined primarily by ISI and to a lesser extent by fiber 
attenuation. This is because the other power penalties are considered to be independent of link 
length. We have found that the model predicts the ISI power penalties to within experimental error for 
power penalties up to 3 dB. Since the maximum allocation for ISI in the IEEE 802.3z link budget 
would be approximately 3 dB, the model can be used to accurately estimate the worst case power 
budgets for all IEEE 802.3z links. For power penalties above 3 dB the model estimates the ISI power 
penalty with an uncertainty of approximately 10% in link length when compared to our experimental 
results. However, for power penalties above 3 dB the uncertainty of the measured eye center power 
penalty increase significantly due to increased timing jitter.

RMS pulse width, rise time and bandwidth
It has been shown [6] that if h1(t) and h2(t) are positive pulses and if h3(t)=h1(t)*h2(t) (* represents 
the convolution operation) then:

 (1)                                           σ3 σ1
2

σ2
2
  

where σi is the rms pulse width of the individual components. The 10% to 90% rise time, Ti, and 
bandwidth of individual components, BWi, are related by constant conversion factors,ai and bi, so 
that:

(2)                                     σi( )BW
ai

BWi
and

(3)                             σi( )T
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therefore
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Equation 1 can be generalised for an arbitrary number of components:

(5)                         σs
2

i

σi
2
 

The rms pulse widths of the individual components may therefore be used to calculate the bandwidth 
or the 10% to 90% rise time of the composite system if the appropriate conversion factors for each 
individual component are known [2]. For example the overall system rise time, Ts, may be 
calculated using:
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The Central Limit Theorem has been used to show that the composite impulse response of 
multimode fiber optic links tend to a Gaussian impulse [2].

Conversion Factors for the Laser and Fiber Components: Gaussian Impulse Response
For systems or components having a Gaussian impulse response the conversion factors a and b are 
equal to 0.187 and 2.563 respectively so that C= 0.48 [2]. Hence the relationships between the rms 
impulse width (σ), rise time (T) and bandwidth are:
(7)                  T .2.563 σ
and

(8)                   BW( )6dB
0.187

σ
where BW(6dB) is the 6dB electrical bandwidth (3dB optical bandwidth) and:            

(9)                          T
.0.187 2.563

BW( )6dB

0.48

BW( )6dB

Conversion Factor for the Non-equalized Optical Receiver: Exponential Impulse Response
The simplest form of optical receiver is a non-equalised receiver with a single pole filter. This type of 
receiver can be modeled by an exponential impulse response of the form [2]:

(10)         hr( )t .1

τ
exp

t

τ
   for t 0,   hr( )t 0    otherwise.

where τ is called the rise time constant. This impulse response has an rms width of τ. If the receiver 
is excited by a step function then the 10% to 90% rise time of the source is [2]:
(11) tr .ln( )9 τ
and the 3 dB bandwidth is [2]:

(12)  BWr( )3dB
0.1588

τ

0.1588

σ

 Since σ
0.1588

BWr( )3dB
 by substitution we have:            

(13)              tr .ln( )9
0.1588

BWr( )3dB

0.35

BWr( )3dB

Therefore, a=0.1588 and b=ln(9), for a component or system with an exponential impulse response.   
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Fiber Exit and Channel Response Time
With the assumption that the fiber exit impulse response is Gaussian, equation (6) can be used to 
calculate the fiber 10% to 90% exit response time (Te):

(14) Te
C1

BWm

2 C1

BWch

2

Ts2

where BWm is the 3 dB optical modal bandwidth of the fiber link, BWch is the 3 dB chromatic 
bandwidth of the fiber link and Ts is the 10% to 90% laser rise time. Since we are assuming that the 
fiber has a Gaussian response, C1=0.48. 
The approximate 10% to 90% composite channel exit response time (Tc) is then:

(15) Tc
C1

BWm

2 C1

BWch

2

Ts2 0.4

BWr

2

If a raised cosine receiver is used the last term in equation 15 would be (0.35/BWr).
ISI Penalty
In appendix A and B it is shown that the ISI penalty, Pisi, for a channel having a Gaussian 
impulse response is approximated by:

(16) Pisi
1

1 .1.425 exp .1.28
T

Tc

2
 

where T is the bit period. This equation is useful for spread sheet implementations of the model. 
It is accurate to within 0.3 dB of the exact solution for ISI penalties up to 5 dB and to within 
1dB for ISI penalties less than 20 dB (see graph in appendix B).

Mode Partition Noise (MPN)
The various wavelength components of a laser output will travel at slightly different velocities 
through a fiber. If the power in each laser mode remained constant, then BWch, due to the 
laser time averaged spectrum, would accurately account for chromatic dispersion induced ISI. 
However, in a multimode laser, although the total output power is constant, the power in each 
laser mode is not constant. As a result, power fluctuations between laser modes leads to an 
additional ISI component. This is usually referred to as mode partition noise [4]. The 
MPN-induced power penalty has been shown to be [4]:

(17) Pmpn
1

1 ( ).Q σmpn
2

where the value of Q is determined by the maximum acceptable bit error rate (BER) using [4]:

(18) BER .1

.Q .2 π

exp
Q2

2

and

(19) σmpn .k

2

1 exp ( )....π B D L σλ 2

where k is the laser mode partition factor ( )0 k 1 , B
1

T
 in ps 1 , D the dispersion in 

ps
.km nm

, 

L is the link length in km and σλ is the rms width of the total laser spectrum in nanometers. 

Multimode Fiber Chromatic Bandwidth Model
The chromatic dispersion of the multimode fiber, in MHz, is [1,2]:

(20) BWch .0.187
.L σλ

1

D12 D22
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where:

(21) D1 .S0

4
λc

λ0
4

λc
3

and
(22) D2 ..0.7 S0 σλ
and λ0 is the zero dispersion wavelength, in nm, of the fiber,  λc is the laser center wavelength, 

in nm, S0 is the dispersion slope parameter at λ0 in 
ps

.km nm2
 and the other terms are as 

previously defined.

Extinction Ratio Penalty
The power penalty associated with transmitting a non zero power level for a zero is [6]:

(23) Pε
1 ε

1 ε
where ε is the laser extinction ratio of the power on "zero's" and the power on "ones". 

Relative Intensity Noise (RIN)

The worst case noise variance, σrin
2
, due to laser RIN can be calculated using the following 

equation:

(24) σrin
2 ..4 BWr( )3dB 10

RIN

10

where it has been assumed that the RIN is worst during "ones" so that the peak laser power is 
used to calculate the noise variance. Assuming equi - probable symbols, zero transmitted power 
on "zeros" and unity photodiode responsivity the peak detected electrical power will be four 
times the average detected electrical power due to square law detection; hence the factor of four 
in equation (24 ) for the RIN variance. In equation (24 ), BWr(3dB) is the 3 dB electrical 
bandwidth of the optical receiver and RIN is the laser RIN in dB/Hz.

The worst case RIN induced power penalty is then:

(25) Prin
1

1 ( ).Q σrin
2

Q as previously defined.

Fiber Attenuation
The attenuation of optical fiber decreases as a power of the wavelength. This is modeled by the 
following equation [1]:

(26) Attenuation( )λc
.Aref L

λc
3.2

where Aref is the fiber attenuation (in dB) at the wavelength λref, λc is the laser center 
wavelength in nm and L is length in km.
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Worst Case Power Budget, Modal Noise Allocation and Link Length
The worst case power budget, Pb, is the difference between the minimum allowed laser launch 
power and the maximum allowed receiver sensitivity at the specified BER. If the summation of 
the worst case power losses and penalties is less than Pb then the link will remain within 
specification. Since some of power penalties and losses vary with link length there will be a 
maximum link length that can be supported when all penalties and losses are set to their worst 
case values. 

When calculating the worst case link length an allocation for worst case modal noise [5] and 
worst case connector loss must be made.

Conclusion: Theory and Experiment
We have documented the IEEE 802.3z worst case link model. The model is a simulation tool 
developed for IEEE 802.3z that provides a baseline for discussions on optical link specification. It 
can be used to illuminate the potential impact of the various link impairments and identify 
possible trade offs between them. Although the individual components of the optical link may not 
have Gaussian impulse responses we assumed that the composite link impulse response was 
Gaussian, as expected from the Central Limit Theorem [2].

We have experimentally measured the fiber and component input parameters required for the link 
model. In addition, we measured the ISI and MPN power penalties as a function of link length 
and baud rate for the three wavelengths of interest to IEEE 802.3z. Experimental results and 
theory are plotted in the six figures at the end of the paper. The laser and link parameters were 
typical rather than worst case and are documented with the figures. Use of typical components 
does not effect the accuracy of the comparison between theory and experiment as a wide range 
of conditions: three wavelengths, variable ISI ( various link lengths, baud rates, two sets of fiber 
having widely different modal and chromatic bandwidths) have been tested. The maximum link 
lengths due to ISI predicted by the model are within approximately 10% of those observed. 
However, the experimental error associated with measured power penalties greater than 3 dB is 
large due the the difficulty in finding eye center because of increased timing jitter. For power 
penalties smaller than 3 dB theory and experiment agree to within the experimental uncertainty 
associated with the experimental data.
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Note: C1 = 480 in all plots because this is the input to the spread sheet model. This is equivalent 
to setting C1= 0.480 in the units used in this paper.

Figure 1:

Figure 2:
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Figure 3:

Figure 4:
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Figure 5:

Figure 6:
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Appendices: Introduction

In the following appendices we outline the derivation of the relationships between the rms impulse 
width, the bandwidth and the rise time for systems or components having Gaussian impulse 
responses. We also plot the graph of the step response of a system having a Gaussian impulse 
response to illustrate the fact that it follows an error function dependence. The worst case eye, 
produced by superimposing the time response of the system to a "one" isolated in a train of 
"zeros" and an isolated "zero" in a train of "ones" together with the worst case inner eye opening 
are also plotted.

Finally, the ISI penalty, calculated in the time domain, is compared to a published equation [3] 
obtained from a frequency domain analysis. Exact agreement between the two results is found as 
would be expected. These equations are compared to a proposed approximate equation useful for 
spread sheet analysis. The approximate equation is accurate to within 0.3 dB of the exact 
solution for ISI penalties up to 5 dB and to within 1dB for ISI penalties less than 20 dB (see graph 
in appendix B).
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Appendix A (Mathcad format)
Rise time, Eye Opening and ISI Power Penalty for Gaussian Systems: Time Domain Method  

Assuming that the normalised composite impulse response hc(t) of the laser, multimode fiber and 
optical receiver channel is Gaussian we may write:

hc( )t .1

.σt .2 π

exp
t2

.2 σt
2

where σt is the rms width of the impulse response of the channel. The Fourier transform of hc(t) will 
then be given by:

d

∞

∞

t..1

.σt .2 π

exp
t2

.2 σt
2

exp( )....i 2 π f t exp ....2 i2 π
2

f2 σt
2

so that the normalised frequency response is Hc(f): 

         Hc( )f exp
....22 i2 π2

f2 σt
2

2
 

Therefore the 3 dB and 6 dB electrical bandwidths are as stated earlier in paper:

        BW( )3dB ..1

2

1

( ).π σt
ln( )2

0.132

σt
 

and 

      BW( )6dB ...1

2

1

( ).π σt
2 ln( )2

0.187

σt

Let i 1

Letting s= σσt then the convolution of the unit step and a Gaussian impulse response is:

d

x

∞

t.1

..2 π s

exp
t2

.2 s2

erf
x

.2 s

2
0.5

We can plot the response of the Gaussian impulse channel to a unit step:

s 1 x ..,3 2.975 3
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4 2 0 2 4
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Step Response of a Gaussian Channel

erf x

.2 s

2
0.5

x

The rise time has an erf dependence having 10% and 90% values at x equal to +/- 1.28155. The 
channel 10% to 90% rise time, Tc, is therefore Tc=2.563s.

Worst Case Inner Eye for a Gaussian System

The response of the Gaussian channel to an isolated "zero" of duration T in a string of "ones" is then:

1 d

( )x T

∞

t.1

..2 π s

exp
t2

.2 s2
d

x

∞

t.1

..2 π s

exp
t2

.2 s2

which equals: 1 .1

2
erf ..1

2
2

( )x T

s
.1

2
erf ..1

2

2

s
x

The eye opening as a function of time is given by the response to an isolated "zero" minus the 
decision threshold all multiplied by two. Assuming the response is normalised to one the 
threshold will be at 0.5 and the eye opening is:

erf ..1

2
2

( )x T

s
erf ..1

2

2

s
x 1

The turning point of the function describing the eye opening as a function of x will be at the 
value of x for which the eye opening is a maximum. This turning point is given by: 

d

dx
erf ..1

2
2

( )x T

s
erf ..1

2

2

s
x 1 0

so that: x .ln
1

exp .1

s2
T2

s2

T
at maximum eye opening.
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Let the baud period, T, equal m*s then substituting for x into the expression for the eye 
opening and simplifying gives:

eyemax( )m .2. erf( ).0.3536 m 1.

We now plot the worst case inner eye diagram and the eye opening.

s 1 this normalises s to unity.

m 3

T .m s remember that the bit period equals m times s.
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The expression derived in this section for the eye opening by the time domain method will be 
compared to Gimlett's frequency domain expression in appendix B. It will be found that they are in 
exact agreement as expected. 
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Appendix B (Mathcad format)
Alternative Method for Calculating the ISI Penalty From A Nonequalized Optical Receiver[4].

Consider a multimode fiber link consisting of a laser transmitter, a length of multimode optical fiber and 
an optical receiver. Assume that the laser is modulated with a nonreturn-to-zero (NRZ) input signal. The 
frequency spectrum of the NRZ input pulse supplied to the laser is then Hp(f):

Hp( )f

sin
.π f

B
.π f

where B is the baud rate. 

Let the transfer function of the multimode fiber be Hf( )f  and the transfer function of the optical receiver be 
Hr( )f . Then Gimlett et al[4] have shown that the maximum eye closure due to dispersion induced ISI is 
Em:

Em 2 1 d

∞

∞
f...Hp( )f Hf( )f Hr( )f e

....i 2 π f to

                              
where to is the optimum (maximum eye opening) sampling time. The maximum power penalty is Pd:

Pd
1

1 Em

Assuming that the normalised impulse response hc(t) of the laser, multimode fiber and optical receiver 
channel is Gaussian we may write:

hc( )t .1

.σt .2 π

exp
t2

.2 σt
2

where σt is the rms width of the impulse response of the channel. The normalised Fourier transform of 
hc(t) will be:

d

∞

∞

t..1

.σt .2 π

exp
t2

.2 σt
2

exp( )....i 2 π f t exp ....2 i2 π
2

f2 σt
2

so that Em may be calculated as:

Em 2 .2 d

∞

∞

f..
sin .π

f

B
.π f

exp
( )...2 π f σt

2

2
exp( )....i 2 π f t0

and the ISI power penalty Pd is:
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Pd
1

1 2 .2 d

∞

∞

f..
sin .π f

B
.π f

exp
( )...2 π f σt

2

2
exp( )....i 2 π f t

We can now plot the ISI penalties as calculated by Gimlett's spectral method and the time 
domain method. These can be compare to the approximate expression proposed for the spread 
sheet model and to the expression originally used by Del Hanson.
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It is clear that the proposed spread sheet equation: Pd
1

1 .1.425 exp .1.28
T

Tc

2

is an accurate, see graph above, approximation for the ISI power penalty of a Gaussian channel.
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